Abstract:
A bidirectional repeater and data multiplexer for serial data comprises a plurality of comparators 302, 304, 306, 308 coupled to the respective input/output (I/O) terminals of a plurality of serial data transceiver devices A1, A2, A3, A4 such as used in I2C communication. Also coupled to these I/O terminals is a plurality of active pulldowns 316, 318, 320, 322. The outputs of the comparators are coupled to N:1 Select 310 logic wherein the desired data input is selected responsive to select lines S1, S2, S3, S4. The output of the N:1 select logic is coupled to a bidirectional control circuit 210, which couples the selected data to the control terminal of an active pulldown 206 having its source coupled to a pulldown voltage Vp low enough to represent a logic “low” level but non-zero, and a drain connected to the I/O terminal of a device B. Also connected to the I/O terminal of device B is an inverting comparator having a threshold voltage Vt somewhat below the pulldown voltage Vp described above, such that the comparator ignores the low level Vp of the active pulldown, but responds to the less than Vp data zero level from device B. This prevents data lockup where data from An would flow back to the same device An. The data output of comparator 208 is thus a repeated version of data present on the I/O terminal of device B, and is coupled through 1:N Select 312 logic, responsive to the same select lines S1 . . . described above, to one of the plurality of active pulldowns 316, 318, 320, 322. Data from device An, one of the plurality of devices A1 . . . A4, is thus repeated and selectively routed to device B. Similarly, data from device B is selectively routed to the active pulldown coupled to the same device An. Pulldown voltages Vp and threshold voltages Vt may be varied to optimize coupling with device B, as long as the pulldown voltage Vp remains above the threshold voltage Vt; the pulldown and threshold voltages may be selected from a plurality of such pulldown and threshold voltages, in order to optimize noise margins when coupling to devices having different Vil and Vol specifications.
Abstract:
A nonvolatile memory device is provided. The nonvolatile memory device comprises a plurality of impurity regions formed in a substrate, a first contact electrically connected to at least one of the impurity regions, a second contact electrically connected to at least one of the impurity regions, a first information storage portion formed at a first height from the substrate and electrically connected to the first contact, and a second information storage portion formed at a second height, which is different from the first height, from the substrate and electrically connected to the second contact.
Abstract:
A mobile system includes a first interface configured to transmit a payload in synchronization with a first clock signal through a first channel at a first transfer rate; and a second interface that includes: a payload storage connected to the first channel and configured to receive the payload from the first channel; and a payload receiver connected to the payload storage and configured to receive the payload from the payload storage in synchronization with a second clock at a second transfer rate through a second channel. A length of the second channel is shorter than a length of the first channel, and the first clock signal is asynchronous with the second clock signal.
Abstract:
The present invention relates to a solar cell module comprising: a transparent plate; a support plate positioned to face the transparent plate; at least one unit cell disposed between the transparent plate and the support plate; a first filler disposed between the transparent plate and the unit cell; a second filler disposed between the support plate and the unit cell; and a reflective layer which is disposed between the second filler and the support plate, and which reflects sunlight that has passed through the transparent plate on the unit cell, wherein the length of the reflective layer is shorter than the length of the second filler and the second filler directly comes in contact with the support plate. According to this configuration, the amount of sunlight irradiated on the unit cell can be increased, thereby enhancing generating efficiency and improving the durability of the solar cell module.
Abstract:
A semiconductor device is provided having a free layer and a pinned layer spaced apart from each other. A tunnel barrier layer is formed between the free layer and the pinned layer. The pinned layer may include a lower pinned layer, and an upper pinned layer spaced apart from the lower pinned layer. A spacer may be formed between the lower pinned layer and the upper pinned layer. A non-magnetic junction layer may be disposed adjacent to the spacer or between layers in the upper or lower pinned layer.
Abstract:
A method of forming a semiconductor device includes forming a perpendicular magnetized magnetic device, annealing the perpendicular magnetized magnetic device, and applying a magnetic field to the perpendicular magnetized magnetic device. The semiconductor device may be a magnetoresistance data storage device. The magnetic field is applied in a direction that is substantially perpendicular to a substrate coupled to the perpendicular magnetized magnetic device.
Abstract:
A unified antenna of shark fin type comprises a pad, a base disposed on upper surface of the pad and providing a space for arranging a printed circuit board and a plurality of antenna units, and a case for covering the pad and the base, wherein the antenna further comprises: a first antenna unit disposed in the middle of the printed circuit board and provided for receiving signal of AM/FM band; a second antenna unit disposed near the first antenna unit and provided for receiving signal of DMB (Digital Multimedia Broadcasting) band; and a third antenna unit disposed in front of the first antenna unit and provided for receiving signal of GPS (Global Positioning System) band, and a first auxiliary unit is disposed over the first antenna unit for enhancing electrical properties of the first antenna unit.
Abstract:
A magnetic tunnel junction element is provided. The magnetic tunnel junction element has first magnetic layer and second magnetic layer formed adjacent, e.g., on lower and upper portions of an insulating layer, respectively and each having a perpendicular magnetic anisotropy, a magnetic field adjustment layer formed on the second magnetic layer and having a perpendicular magnetic anisotropy, and a bather layer formed between the magnetic field adjustment layer and the second magnetic layer. The second magnetic layer and the magnetic field adjustment layer are magnetically decoupled from each other.
Abstract:
Apparatus and method for managing a user's desire to see user selected content along with a publisher's content on a web page. The apparatus and method manage the displaying of the user selected content on the web pages along with managing revenue and payments for the display of the user selected content.
Abstract:
A small antenna for vehicle comprises a coil member of helical antenna structure with a plurality of coils formed; a connector disposed at one end of the coil member; a signal pin contacting with the connector; a cylindrical member coupled to the other end of the coil member and made of metal material; a dielectric body inserted inside the coil member and cylindrical member and disposed adjacent to the connector and signal pin; a conductor inserted inside the coil member and cylindrical member and disposed at one end of the dielectric body; and a cover member enclosing the coil member and cylindrical member inside which the dielectric body and conductor are inserted.