摘要:
A magnetic tunnel junction element is provided. The magnetic tunnel junction element has first magnetic layer and second magnetic layer formed adjacent, e.g., on lower and upper portions of an insulating layer, respectively and each having a perpendicular magnetic anisotropy, a magnetic field adjustment layer formed on the second magnetic layer and having a perpendicular magnetic anisotropy, and a bather layer formed between the magnetic field adjustment layer and the second magnetic layer. The second magnetic layer and the magnetic field adjustment layer are magnetically decoupled from each other.
摘要:
A semiconductor device is provided having a free layer and a pinned layer spaced apart from each other. A tunnel barrier layer is formed between the free layer and the pinned layer. The pinned layer may include a lower pinned layer, and an upper pinned layer spaced apart from the lower pinned layer. A spacer may be formed between the lower pinned layer and the upper pinned layer. A non-magnetic junction layer may be disposed adjacent to the spacer or between layers in the upper or lower pinned layer.
摘要:
A slurry, chemical mechanical polishing (CMP) method using the slurry, and method of forming metal wiring using the slurry. The slurry may include a polishing agent, an oxidant, and at least one defect inhibitor to protect the metal film. The CMP method and method of forming metal wiring may employ one or two slurries with at least one of the slurries including at least one defect inhibitor.
摘要:
A slurry, chemical mechanical polishing (CMP) method using the slurry, and method of forming metal wiring using the slurry. The slurry may include a polishing agent, an oxidant, and at least one defect inhibitor to protect the metal film. The CMP method and method of forming metal wiring may employ one or two slurries with at least one of the slurries including at least one defect inhibitor.
摘要:
A test pattern and a method of controlling a CMP using the same are provided. The test pattern is disposed on a monitoring region of a semiconductor substrate having a main region and a monitoring region. The test pattern includes a planar region and a pattern region. The method comprises setting a correlation between a step difference of a test pattern and an etched thickness of a main pattern, then applying the CMP to a semiconductor substrate having the test pattern and the main pattern for a predetermined time. The step difference of the test pattern is measured and the etched thickness of the main pattern, which corresponds to the step difference of the test pattern, is determined from the correlation. A polishing time is corrected by comparing the determined etched thickness of the main pattern with a reference value, and the corrected polishing time is applied to a subsequent lot or subsequent substrate.
摘要:
Methods of forming ferroelectric layers include forming a ferroelectric layer on a substrate and chemically-mechanically polishing a surface of the ferroelectric layer by rotating a polishing pad on the surface at a rotation speed in a range from about 5 rpm to about 25 rpm. This polishing step includes pressing the polishing pad onto the surface of the ferroelectric layer at a pressure in a range from about 0.5 psi to about 3 psi. This polishing step may be followed by the step of exposing the polished surface to a rapid thermal anneal. This anneal can be performed in an inert atmosphere containing a gas selected from a group consisting of nitrogen, helium, argon and neon.
摘要:
A slurry, chemical mechanical polishing (CMP) method using the slurry, and method of forming metal wiring using the slurry. The slurry may include a polishing agent, an oxidant, and at least one defect inhibitor to protect the metal film. The CMP method and method of forming metal wiring may employ one or two slurries with at least one of the slurries including at least one defect inhibitor.
摘要:
A test pattern and a method of controlling a CMP using the same are provided. The test pattern is disposed on a monitoring region of a semiconductor substrate having a main region and a monitoring region. The test pattern includes a planar region and a pattern region. The method comprises setting a correlation between a step difference of a test pattern and an etched thickness of a main pattern, then applying the CMP to a semiconductor substrate having the test pattern and the main pattern for a predetermined time. The step difference of the test pattern is measured and the etched thickness of the main pattern, which corresponds to the step difference of the test pattern, is determined from the correlation. A polishing time is corrected by comparing the determined etched thickness of the main pattern with a reference value, and the corrected polishing time is applied to a subsequent lot or subsequent substrate.
摘要:
A test pattern and a method of controlling a CMP using the same are provided. The test pattern is disposed on a monitoring region of a semiconductor substrate having a main region and a monitoring region. The test pattern includes a planar region and a pattern region. The method comprises setting a correlation between a step difference of a test pattern and an etched thickness of a main pattern, then applying the CMP to a semiconductor substrate having the test pattern and the main pattern for a predetermined time. The step difference of the test pattern is measured and the etched thickness of the main pattern, which corresponds to the step difference of the test pattern, is determined from the correlation. A polishing time is corrected by comparing the determined etched thickness of the main pattern with a reference value, and the corrected polishing time is applied to a subsequent lot or subsequent substrate.