Abstract:
An exhaust gas purifying apparatus for an internal combustion engine is provided. The apparatus includes a first catalyst and a second catalyst. The first catalyst is provided in an exhaust passage of the engine, and can remove NOx in exhaust gases from the engine when an air-fuel ratio of an air-fuel mixture burning in the engine is in the vicinity of the stoichiometric ratio. The second catalyst is provided downstream of the first catalyst, an can remove NOx in the exhaust gases using a reducing agent. An execution condition of a lean operation in which the air-fuel ratio is set to a lean air-fuel ratio which is leaner than the stoichiometric ratio, is determined. When switching the air-fuel ratio from an air-fuel ratio in the vicinity of the stoichiometric ratio to the lean air-fuel ratio, the air-fuel ratio is controlled to a rich air-fuel ratio which is richer than the stoichiometric ratio, during a lean transition period from the time the execution condition is satisfied. The air-fuel ratio is controlled to the lean air-fuel ratio after the lean transition period has elapsed.
Abstract:
A control apparatus capable of ensuring high control accuracy even if a controlled object is in a transient state, when a control input is calculated based on a value obtained by correcting a value calculated by a feedforward control method using a value calculated by a feedback control method. The control apparatus calculates a fuel correction coefficient such that an output from an oxygen concentration sensor converges to a target output, and multiplies a basic injection amount by the coefficient to calculate a fuel injection amount. The basic injection amount is selected from three values according to the cause of a mapping error. Two of them are calculated by searching respective maps according to corrected throttle valve opening values and engine speed. The other is calculated by multiplying a value obtained by searching a map according to the opening and the speed by a correction coefficient.
Abstract:
A control system for an internal combustion engine, which is capable of properly controlling both the temperature of an exhaust system and the air-fuel ratio of exhaust gases even when the control range of the air-fuel ratio of a combustion air-fuel mixture is limited, thereby improving the reduction of exhaust emissions. In the control system, a demanded torque-calculating section calculates a demanded torque. A first controller calculates a target equivalent ratio such that a DeNOx catalyst temperature converges to a predetermined target temperature. A second controller calculates three feedback correction values such that an output value from an oxygen concentration sensor converges to a target output value. A third controller calculates a torque fuel injection amount for generating the combustion air-fuel mixture, a post fuel injection amount for supplying unburned fuel to a DeNOx catalyst, etc. based on five values.
Abstract:
A control apparatus which is capable of ensuring both high-level stability and accuracy of control and reducing manufacturing costs thereof and computation load thereon, even when controlling a controlled object having extremal characteristics or a controlled object of a multi-input multi-output system. The control apparatus is comprised of an onboard model analyzer and a cooperative controller. The onboard model analyzer, based on a controlled object model defining the relationships between an intake opening angle and an exhaust reopening angle, and an indicated mean effective pressure, calculates first and second response indices and indicative of a correlation therebetween, respectively. The cooperative controller calculates the intake opening angle and the exhaust reopening angle with predetermined algorithms such that the indicated mean effective pressure is caused to converge to its target value, and determines the increasing/decreasing rate and the increasing/decreasing direction of the aforementioned angles according to the first and second response indices.
Abstract:
A control system which is capable of compensating for and suppressing the influence of a periodic disturbance on a controlled object more quickly, even when the controlled object is subjected to the periodic disturbance the amplitude of which periodically changes, thereby enhancing the stability and the accuracy of control. The control system includes an ECU. The ECU calculates disturbance compensation values for compensating for a periodic disturbance by searching maps and tables, in timing of generation of each pulse of a CRK signal. The ECU calculates control inputs at a predetermined control period, with predetermined control algorithms, according to the disturbance compensation values read in at the control period, respectively.
Abstract:
A control for avoiding interference between a valve and a piston of an engine is provided. The engine has a variable lift mechanism that is capable of changing a lift amount of the valve and a variable phase mechanism that is capable of changing a phase of the valve. A predicted value of the phase is calculated. A first determination of whether or not the predicted value has exceeded a first predetermined value is made. If it is determined that the predicted value has exceeded the first predetermined value, at least one of the lift amount and the phase is changed to avoid the interference between the valve and the piston. By using the predicted value, the interference can be avoided without delay.
Abstract:
A control apparatus which is capable of compensating for a control error properly and quickly even under a condition where the control error is temporarily increased e.g. by degradation of reliability of the detection results of reference parameters other than controlled variables, thereby making it possible to ensure a high accuracy of control. An air-fuel ratio controller of the control apparatus calculates an air-fuel ratio error estimated value and an error weight, calculates an modified error, calculates a basic lift correction value such that the modified error becomes equal to 0, calculates a lift correction value, calculates corrected valve lift by adding the lift correction value to valve lift, calculates a first estimated intake air amount for feedforward control of an air-fuel ratio according to the corrected valve lift, calculates an air-fuel ratio correction coefficient for feedback control of the air-fuel ratio, and calculates a fuel injection amount according to these.
Abstract:
A control system which is capable of compensating for and suppressing the influence of a periodic disturbance on a controlled object more quickly, even when the controlled object is subjected to the periodic disturbance the amplitude of which periodically changes, thereby enhancing the stability and the accuracy of control. The control system includes an ECU. The ECU calculates disturbance compensation values for compensating for a periodic disturbance by searching maps and tables, in timing of generation of each pulse of a CRK signal. The ECU calculates control inputs at a predetermined control period, with predetermined control algorithms, according to the disturbance compensation values read in at the control period, respectively.
Abstract:
A failure detection apparatus for preventing erroneous detection due to a degradation of a sensor and thereby accurately performing failure detection of a variable valve timing and lift control system is provided. The detection apparatus detects a failure of a variable valve timing and lift control system in an engine. The detection apparatus detects a vibration inside an engine cylinder, extracts the component of seating sound of the valve from the output signal of the sensor, determines an actual seating time of said valve from the component of seating sound, and calculates a target seating time of said valve based on at least one of a requested lift amount, a requested advance angle, and a requested open angle depending on the operating conditions. The detecting apparatus corrects the actual seating time for a stationary deviation between the actual seating time and the target seating time caused by degradation or unevenness of the sensor. The detecting apparatus determines a failure of the variable valve timing and lift control system by comparing the corrected actual seating time with the target seating time.
Abstract:
An air fuel ratio controller for an internal combustion engine includes an exhaust gas sensor, an identifier and a control unit. The exhaust gas sensor detects oxygen concentration of exhaust gas. The identifier calculates model parameters for a model of a controlled object based on the output of the exhaust gas sensor. The controlled object includes an exhaust system of the engine. The control unit is configured to use the model parameters to control the air-fuel ratio so that the output of the exhaust gas sensor converges to a desired value, and to stop the identifier from calculating the model parameters during and immediately after the engine operation with a lean air-fuel ratio. The calculation of the model parameters may be also stopped during and immediately after fuel-cut operation that stops fuel supply to the engine. Such a stop of the calculation of the model parameters reduces the emission of undesired substances contained in exhaust gas when the engine shifts from lean operation to stoichiometric/rich operation.