摘要:
Gasified candy which produces a more pronounced popping sensation is prepared by maintaining a sugar melt at a temperature of below about 280.degree. F. during gasification. This product contains observable gas bubbles with a majority of the large bubbles having a diameter greater than about 225.mu. which is substantially larger than those in the gasified candy produced heretofore.
摘要:
An injection molding arrangement and process for producing regularly shaped pieces of gasified candy which effect a pleasant sizzling sensation in the mouth. A confectionary solution, which may be a sugar melt, is subjected to a superatmospheric carbonating pressure in a carbonating vessel to cause absorption therein of carbon dioxide. An injection mold for forming the solution into suitably shaped pieces of candy is prepressurized at a superatmospheric carbonation pressure prior to the injection therein of the confectionary solution. The solution is then injected into the mold at a pressure substantially above the superatmospheric pressure in the carbonation vessel. The solution is then allowed to cool and solidify in the pressurized mold, producing regularly shaped pieces of carbonated candy.
摘要:
Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous groves, double spiral grooves, and multiply overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
摘要:
The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads. In addition, these pads can be designed to tune the coefficient of friction by surface engineering, through the addition of solid lubricants, and creating low shear integral pads having multiple layers of polymeric material which form an interface parallel to the polishing surface. The pads can also have controlled porosity, embedded abrasive, novel grooves on the polishing surface, for slurry transport, which are produced in situ, and a transparent region for endpoint detection.
摘要:
Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous groves, double spiral grooves, and multiply overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
摘要:
Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous grooves, double spiral grooves, and multiple overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
摘要:
The invention provides a waveguide with a waveguide core having longitudinal sidewall surfaces, a longitudinal top surface, and a longitudinal bottom surface that is disposed on a substrate. An interface layer is disposed on at least one longitudinal sidewall surface of the waveguide core. A waveguide cladding layer is disposed on at least the waveguide core sidewall and top surfaces, over the interface layer. The waveguide of the invention can be produced by forming a waveguide undercladding layer on a substrate, and then forming a waveguide core on the undercladding layer. An interface layer is then formed on at least a longitudinal sidewall surface of the waveguide core, and an upper cladding layer is formed on a longitudinal top surface and on longitudinal sidewall surfaces of the waveguide core, over the interface layer.
摘要:
A polishing pad for chemical mechanical planarization of a film on a substrate is customized by obtaining one or more characteristics of a structure on a substrate. For example, when the structure is a chip formed on a semiconductor wafer, the one or more characteristics of the structure can include chip size, pattern density, chip architecture, film material, film topography, and the like. Based on the one or more characteristics of the structure, a value for the one or more chemical or physical properties of the pad is selected. For example, the one or more chemical or physical properties of the pad can include pad material hardness, thickness, surface grooving, pore size, porosity, Youngs modulus, compressibility, asperity, and the like.
摘要:
The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads. In addition, these pads can be designed to tune the coefficient of friction by surface engineering, through the addition of solid lubricants, and creating low shear integral pads having multiple layers of polymeric material which form an interface parallel to the polishing surface. The pads can also have controlled porosity, embedded abrasive, novel grooves on the polishing surface, for slurry transport, which are produced in situ, and a transparent region for endpoint detection.