摘要:
A pressure sensor is provided. The pressure sensor includes a multi-layer laminate comprising a substrate and a semiconductor layer, wherein the substrate comprises single crystal or quasi-single crystal aluminum oxide, and a portion of the substrate that is spaced from a peripheral edge is wet etched to form an inwardly facing sidewall that defines a volume; and a substrate to which the multi-layer laminate is secured. The volume is an enclosed volume further defined by a substrate surface.
摘要:
A method for forming smooth walled, prismatically-profiled through-wafer vias and articles formed through the method. An etch stop material is provided on a wafer, which may be a silicon wafer. A mask material is provided on the etch stop material and patterned in such a way as to lead to the formation of vias that have at least one pair of opposing side walls that run parallel to a plane in the wafer. A wet etchant, such as potassium hydroxide, is used to etch vias in the wafer. The use of a wet etchant leads to the formation of smooth side walls. This method allows an aspect ratio of height versus width of the vias of greater than 75 to 1.
摘要:
According to some embodiments, an apparatus includes a substrate that defines a plane. The apparatus also includes a first conducting plate that is substantially normal to the substrate and a second conducting plate that is (i) substantially normal to the substrate and (ii) deformable in response to a pressure.
摘要:
A current control device is described. The current control device includes at least one line socket configured to couple to a first power system. The current control device also includes at least one load socket configured to couple to a second power system and at least one micro-electromechanical system (MEMS) switching device coupled between the at least one line socket and the at least one load socket. The at least one MEMS switching device is configured to selectably couple the first power system to the second power system.
摘要:
In accordance with one aspect of the present invention, a MEMS switch is provided. The MEMS switch includes a substrate, a first and a second actuating element electrically coupled together, an anchor mechanically coupled to the substrate and supporting at least one of the first and second actuating elements, and a gate driver configured to actuate the first and second actuating elements.
摘要:
An on-load tap changer (OLTC) for a transformer winding is disclosed. The OLTC includes a first MEMS switch coupled in series with a first tap on the transformer winding and a neutral terminal. The OLTC also includes a second MEMS switch coupled in series with a second tap on the transformer winding and the neutral terminal. The OLTC further includes a controller coupled to the first MEMS switch and the second MEMS switch, the controller configured to coordinate the switching operations of the first MEMS switch module and the second MEMS switch module to obtain a first predetermined turns ratio or a second predetermined turns ratio for the transformer winding.
摘要:
A system that includes micro-electromechanical system switching circuitry, such as may be made up of a plurality of micro-electromechanical switches, is provided. The plurality of micro-electromechanical switches may generally operate in a closed switching condition during system operation. A controller is coupled to the electromechanical switching circuitry. The controller may be configured to actuate at least one of the micro-electromechanical switches to a temporary open switching condition while a remainder of micro-electromechanical switches remains in the closed switching condition to conduct a load current and avoid interrupting system operation. The temporary open switching condition of the switch is useful to avoid a tendency of switch contacts to stick to one another.
摘要:
An etchant including a halogenated salt, such as Cryolite (Na3AlF6) or potassium tetrafluoro borate (KBF4), is provided. The salt may be present in the etchant in an amount sufficient to etch a substrate and may have a melt temperature of greater than about 200 degrees Celsius. A method of wet etching may include contacting an etchant to at least one surface of a support layer of a multi-layer laminate, wherein the support layer may include aluminum oxide; or contacting an etchant to at least one surface of a support layer of a multi-layer laminate, wherein the etchant may include Cryolite (Na3AlF6), potassium tetrafluoro borate (KBF4), or both; and etching at least a portion of the support layer. The method may provide a laminate produced by growing a crystal onto an aluminum oxide support layer, and chemically removing at least a portion of the support layer by wet etch. An electronic device, optical device or combined device including the laminate is provided.
摘要:
One embodiment of the invention comprises a MEMS structure further comprising: a MEMS device (240) having a first surface with one or more contact structures (244, 245 and 246) thereon connected to functional elements of the MEMS device (240), a dielectric layer (100) overlying the first surface defining openings therein through which the contact structures (244, 245 and 246) are exposed, a patterned metallization layer (254, 255 and 256) comprising conductive material extending from the contact structures (244, 245 and 246) through the openings in the dielectric layer (100) and onto a surface of the dielectric layer and a first heat sink (190) in thermal communication with the metallization layer (254, 255 and 256).
摘要:
A method for forming smooth walled, prismatically-profiled through-wafer vias and articles formed through the method. An etch stop material is provided on a wafer, which may be a silicon wafer. A mask material is provided on the etch stop material and patterned in such a way as to lead to the formation of vias that have at least one pair of opposing side walls that run parallel to a plane in the wafer. A wet etchant, such as potassium hydroxide, is used to etch vias in the wafer. The use of a wet etchant leads to the formation of smooth side walls. This method allows an aspect ratio of height versus width of the vias of greater than 75 to 1.