Abstract:
A method of electrically testing pixel functionality is provided comprising releasably disposing a wafer in a socket. The wafer has at least one baseplate comprised of cathode emitters arranged in pixels. The socket has pads. The socket pads are contacted with test pins, and each of the pixels is addressed individually, thereby causing the cathode emitters to emit electrons in a current. The current is collected from each of the pixels on an anode screen. Alternatively, the anode card may have pins, and these pins contact pads on the baseplate. The baseplate, or substrate with baseplates, does not require a socket with pins.
Abstract:
A method for fabricating sharp asperities. A substrate is provided which has a mask layer disposed thereon, and a layer of micro-spheres is disposed superjacent the mask layer. The micro-spheres are for patterning the mask layer. Portions of the mask layer are selectively removed, thereby forming circular masks. The substrate is isotropically etched, thereby creating sharp asperities.
Abstract:
A field emission display includes electrostatic discharge protection circuits coupled to an emitter substrate and an extraction grid. In the preferred embodiment, the electrostatic discharge circuit includes diodes reverse biased between grid sections and a first reference potential or between row lines and a second reference potential. The diodes provide a current path to discharge static voltage and thereby prevent a high voltage differential from being maintained between the emitter sets and the extraction grids. The diodes thereby prevent the emitter sets from emitting electrons at a high rate that may damage or destroy the emitter sets. In one embodiment, the diodes are coupled directly between the grid sections and the row lines. In one embodiment, the diodes are formed in an insulative layer carrying the grid sections. In another embodiment, the diodes are integrated into the emitter substrate.
Abstract:
A large-area field emission device (“FED”) which is sealed under a predetermined level of vacuum pressure and method for making same includes a large-area substrate, an emitter electrode structure disposed on the substrate such that the emitter structure is disposed over a substantial portion of the substrate, a plurality of groups of micropoints, with each group having a predetermined number of micropoints and with each group being disposed at discrete positions on the emitter electrode structure, an insulating layer disposed over the substrate, with the insulating layer having openings therethrough which have a diameter within a predetermined range, and with each openings surrounding at least a portion a micropoint, an extraction structure disposed on the insulating layer, with the extraction structure having openings therethrough which have a diameter within a predetermined range, with each openings surrounding at least a portion of a micropoint, and with the openings in the extraction structure being aligned with openings in the insulating layer, a faceplate disposed above and spaced away from the extraction structure that is transparent predetermined wavelengths of light, an indium tin oxide (“ITO”) layer disposed on a surface of the faceplate towards the extraction structure, a matrix member disposed on the ITO layer, with the matrix member defining areas of the ITO surface that are to serve as pixel areas, with the pixel areas being aligned with the micropoints of a group micropoints, cathodoluminescent material disposed on the ITO in a plurality pixel areas, with the cathodoluminescent material at a particular pixel area being aligned to receive electron emitted from the micropoints associated that pixel area, and a plurality of spacers disposed between the faceplate and the extraction structure at predetermined locations, with each spacer having a height and cross-sectional shape commensurate with stresses that spacer will encounter caused by the vacuum pressure within the FED.
Abstract:
A etch stop layer for use in a silicon oxide dry fluorine etch process is made of silicon nitride with hydrogen incorporated in it either in the form of N—H bonds, Si—H bonds, or entrapped free hydrogen. The etch stop layer is made by either increasing the NH3 flow, decreasing the SiH4 flow, decreasing the nitrogen flow, or all three, in a standard PECVD silicon nitride fabrication process. The etch stop can alternatively be made by pulsing the RF field in either a PECVD process or an LPCVD process.
Abstract:
The present invention is a baseplate that has a supporting substrate with a primary surface upon which an array of emitters is formed. An insulator layer with a plurality of cavities aligned with respective emitters is disposed on the primary surface, and an extraction grid with a plurality of cavity openings aligned with respective emitters is deposited on the insulator layer. The extraction grid is made from a silicon based layer of material. A current control substrate formed from the silicon based layer of material of the extraction grid is provided such that the current control substrate is electrically isolated from the extraction grid and electrically connected to the emitters. The current control substrate has sufficient resistivity to limit the current from the emitters.
Abstract:
A filtered cathodic vacuum arc is used as a source of metal to generate a highly directional beam of metal ions having substantially larger velocity parallel to the axis of the beam (perpendicular to the surface of the target) than perpendicular to the axis of the beam. This ion beam, with energies ranging up to 80 eV, is used to deposit metal into the bottom of high aspect (typically greater than 3 to 1) openings, for example, to deposit titanium in the bottom of deep contact holes in semiconductor devices or to deposit molybdenum to form tips for emitters for a field emission display. Gases can be introduced into the vacuum deposition chamber during deposition to change the nature of the deposit. The substrate or target bias can be adjusted to control the deposition rate.
Abstract:
A faceplate in a flat panel display has attachment sites made with a method that includes steps of mixing frit and photoresist to form a mixture, applying the mixture to the substrate, softbaking the substrate and mixture, and exposing and developing the resist to define adhesion sites. Spacers are then attached to the faceplate at the adhesion sites.
Abstract:
A process is disclosed for anodically bonding an array of spacer columns to one of the inner major faces on one of the generally planar plates of an evacuated, flat-panel video display. The process includes the steps of: providing a generally planar plate having a plurality of spacer column attachment sites; providing electrical interconnection between all attachment sites; coating each attachment site with a patch of oxidizable material; providing an array of unattached permanent glass spacer columns, each unattached permanent spacer columns being of uniform length and being positioned longitudinally perpendicular to a single plane, with the plane intersecting the midpoint of each unattached spacer column; positioning the array such that an end of one permanent spacer column is in contact with the oxidizable material patch at each attachment site; and anodically bonding the contacting end of each permanent spacer column to the oxidizable material layer. The invention also includes an evacuated flat panel display having spacer structures which are anodically bonded to an internal major face of the display, as well as a face plate assembly manufactured by the aforestated process.
Abstract:
A flat-panel field emission display comprises a luminescent faceplate, a rigid backplate, and an interposed or sandwiched emitter or cathode plate. A positioning spacer or connector ridge is formed on the rear surface of the faceplate to space the cathode plate a fixed distance behind the faceplate. A peripheral seal is formed between the faceplate and the backplate. The faceplate, backplate, and peripheral seal define an evacuated internal space which contains the cathode plate. The backplate is spaced behind the cathode plate to create a rearward vacuum space in which a getter is located.