摘要:
A semiconductor structure is provided that includes a semiconductor oxide layer having features. The semiconductor oxide layer having the features is located between an active semiconductor layer and a handle substrate. The semiconductor structure includes a planarized top surface of the active semiconductor layer such that the semiconductor oxide layer is beneath the planarized top surface. The features within the semiconductor oxide layer are mated with a surface of the active semiconductor layer.
摘要:
A structure and method to fabricate a body contact on a transistor is disclosed. The method comprises forming a semiconductor structure with a transistor on a handle wafer. The structure is then inverted, and the handle wafer is removed. A silicided body contact is then formed on the transistor in the inverted position. The body contact may be connected to neighboring vias to connect the body contact to other structures or levels to form an integrated circuit.
摘要:
An electrical structure is provided that includes a dielectric layer present on a semiconductor substrate and a via opening present through the dielectric layer.An interconnect is present within the via opening. A metal semiconductor alloy contact is present in the semiconductor substrate. The metal semiconductor alloy contact has a perimeter defined by a convex curvature relative to a centerline of the via opening. The endpoints for the convex curvature that defines the metal semiconductor alloy contact are aligned to an interface between a sidewall of the via opening, a sidewall of the interconnect and an upper surface of the semiconductor substrate.
摘要:
After forming a planarization dielectric layer in a replacement gate integration scheme, disposable gate structures are removed and a stack of a gate dielectric layer and a gate electrode layer is formed within recessed gate regions. Each gate electrode structure is then recessed below a topmost surface of the gate dielectric layer. A dielectric metal oxide portion is formed above each gate electrode by planarization. The dielectric metal oxide portions and gate spacers are employed as a self-aligning etch mask in combination with a patterned photoresist to expose and metalize semiconductor surfaces of a source region and an inner electrode in each embedded memory cell structure. The metalized semiconductor portions form metal semiconductor alloy straps that provide a conductive path between the inner electrode of a capacitor and the source of an access transistor.
摘要:
A trench and method of fabrication is disclosed. The trench shape is cylindrosymmetric, and is created by forming a dopant profile that is monotonically increasing in dopant concentration level as a function of depth into the substrate. A dopant sensitive etch is then performed, resulting in a trench shape providing increased surface area, yet having relatively smooth trench walls.
摘要:
A node dielectric and a conductive trench fill region filling a deep trench are recessed to a depth that is substantially coplanar with a top surface of a semiconductor-on-insulator (SOI) layer. A shallow trench isolation portion is formed on one side of an upper portion of the deep trench, while the other side of the upper portion of the deep trench provides an exposed surface of a semiconductor material of the conductive fill region. A selective epitaxy process is performed to deposit a raised source region and a raised strap region. The raised source region is formed directly on a planar source region within the SOI layer, and the raised strap region is formed directly on the conductive fill region. The raised strap region contacts the raised source region to provide an electrically conductive path between the planar source region and the conductive fill region.
摘要:
A structure and method for forming isolation and a buried plate for a trench capacitor is disclosed. Embodiments of the structure comprise an epitaxial layer serving as the buried plate, and a bounded deep trench isolation area serving to isolate one or more deep trench structures. Embodiments of the method comprise angular implanting of the deep trench isolation area to form a P region at the base of the deep trench isolation area that serves as an anti-punch through implant.
摘要:
A thin semiconductor layer is formed and patterned on a semiconductor substrate to form a thin semiconductor fuselink on shallow trench isolation and between an anode semiconductor region and a cathode semiconductor region. During metallization, the semiconductor fuselink is converted to a thin metal semiconductor alloy fuselink as all of the semiconductor material in the semiconductor fuselink reacts with a metal to form a metal semiconductor alloy. The inventive electrical fuse comprises the thin metal semiconductor alloy fuselink, a metal semiconductor alloy anode, and a metal semiconductor alloy cathode. The thin metal semiconductor alloy fuselink has a smaller cross-sectional area compared with prior art electrical fuses. Current density within the fuselink and the divergence of current at the interface between the fuselink and the cathode or anode comparable to prior art electrical fuses are obtained with less programming current than prior art electrical fuses.
摘要:
Semiconductor structures and methods to control bottom corner threshold in a silicon-on-insulator (SOI) device. A method includes doping a corner region of a semiconductor-on-insulator (SOI) island. The doping includes tailoring a localized doping of the corner region to reduce capacitive coupling of the SOI island with an adjacent structure.
摘要:
A method of forming a deep trench capacitor in a semiconductor-on-insulator substrate is provided. The method may include providing a pad layer positioned above a bulk substrate, etching a deep trench into the pad layer and the bulk substrate extending from a top surface of the pad layer down to a location within the bulk substrate, and doping a portion of the bulk substrate to form a buried plate. The method further including depositing a node dielectric, an inner electrode, and a dielectric cap substantially filling the deep trench, the node dielectric being located between the buried plate and the inner electrode, the dielectric cap being located at a top of the deep trench, removing the pad layer, growing an insulator layer on top of the bulk substrate, and growing a semiconductor-on-insulator layer on top of the insulator layer.