Abstract:
A prosthetic mitral valve can include an outer frame, an inner frame, a valve structure, and a sealing member. The outer frame comprises a plurality of first struts arranged in a lattice pattern and defining a first lumen. The outer frame is self-expandable from a compressed state to an expanded state. The inner frame comprises a plurality of second struts arranged in a lattice pattern and defining a second lumen. The inner frame is disposed within the first lumen of the outer frame, is self-expandable from a compressed state to an expanded state. The valve structure comprises three leaflets made from pericardium and is mounted within the second lumen of the inner frame. The sealing member is coupled to and extends radially outwardly from an atrial end of the outer frame and is configured to engage native tissue of the heart on an atrial side of the native mitral valve.
Abstract:
An exemplary two-stage prosthetic heart valve system has a radially expandable base stent implanted within a native valve annulus. The base stent desirably has three position markers projecting in the axial direction from the outflow end of the base stent to assist in aligning the stent with respect to the commissures of the native valve. The two-stage heart valve system also has a valve component that is delivered to and mounted within the base stent in a separate or sequential operation after the base stent has been anchored within the annulus. The valve component in certain embodiments comprises a hybrid valve component that includes a conventional, non-expandable surgical valve that is modified to include an expandable coupling stent that can be expanded to engage the inner surface of the base stent, thereby anchoring the valve component to the base stent.
Abstract:
A prosthetic apparatus configured for implantation in the native mitral valve region of the heart includes a main body that is self-expandable from a compressed state to a radially expanded state. The prosthetic apparatus comprises at least one ventricular anchor coupled to the main body and disposed outside of the main body for capturing a native valve leaflet between the anchor and an outer surface of the main body. In one preferred method of implantation, the prosthetic apparatus is rotated within the native mitral valve region such that a portion of the anchor moves horizontally behind adjacent chordae for anchoring the prosthetic apparatus in the native mitral valve.
Abstract:
This disclosure pertains generally to prosthetic devices and related methods for helping to seal native heart valves and prevent or reduce regurgitation therethrough, as well as devices and related methods for implanting such prosthetic devices. In some cases, a spacer having a single anchor can be implanted within a native heart valve. In some cases, a spacer having dual anchors can be implanted within a native heart valve. In some cases, devices can be used to extend the effective length of a native heart valve leaflet.
Abstract:
A heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve has a base stent that is deployed at a treatment site, and a valve component configured to quickly connect to the base stent. The base stent may take the form of a self- or balloon-expandable stent that expands outward against the native valve with or without leaflet excision. The valve component has a non-expandable prosthetic valve and a self- or balloon-expandable coupling stent for attachment to the base stent, thereby fixing the position of the valve component relative to the base stent. The prosthetic valve may be a commercially available to valve with a sewing ring and the coupling stent attaches to the sewing ring. The system is particularly suited for rapid deployment of heart valves in a conventional open-heart surgical environment. A catheter-based system and method for deployment is provided.
Abstract:
A quick-connect heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable coupling stent, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the coupling stent attached thereto. The coupling stent may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes a hollow two-piece handle through which a balloon catheter passes. A valve holder is stored with the heart valve and the handle easily attaches thereto to improve valve preparation steps.
Abstract:
Embodiments of a method for implanting a prosthetic valve at the native mitral valve region of the heart, the prosthetic valve including a main body that is radially compressible to a radially compressed state and self-expandable from the compressed state to a radially expanded state. The prosthetic apparatus also comprises at least one ventricular anchor coupled to the main body and disposed outside of the main body with a leaflet-receiving space between the anchor and an outer surface of the main body to receive a native valve leaflet. Apparatus for delivering and implanting the prosthetic valve are also described.
Abstract:
A prosthetic mitral valve assembly is disclosed. The assembly comprises a radially-expandable stent including a lower portion sized for deployment between leaflets of a native mitral valve and an upper portion having a flared end. The upper portion is sized for deployment within the annulus of the mitral valve and the flared end is configured to extend above the annulus. The stent is formed with a substantially D-shape cross-section for conforming to the native mitral valve. The D-shape cross-section includes a substantially straight portion for extending along an anterior side of the native mitral valve and a substantially curved portion for extending along a posterior side of the native mitral valve. The assembly further includes a valve portion formed of pericardial tissue and mounted within an interior portion of the stent for occluding blood flow in one direction.
Abstract:
A heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve has a base stent that is deployed at a treatment site, and a valve component configured to quickly connect to the base stent. The base stent may take the form of a self- or balloon-expandable stent that expands outward against the native valve with or without leaflet excision. The valve component has a non-expandable prosthetic valve and a self- or balloon-expandable coupling stent for attachment to the base stent, thereby fixing the position of the valve component relative to the base stent. The prosthetic valve may be a commercially available valve with a sewing ring and the coupling stent attaches to the sewing ring. The system is particularly suited for rapid deployment of heart valves in a conventional open-heart surgical environment.
Abstract:
A prosthetic heart valve for implantation at a native heart valve includes a multi-part frame. The multi-part frame includes a cylindrical main body and a ventricular anchor component surrounding the main body. The main body includes a plurality of struts arranged in a lattice pattern. The ventricular anchor component is attached to the main body only at an outflow end of the main body and extends toward an inflow end of the main body. The prosthetic valve further includes a valve structure having three leaflets made from pericardium. The multi-part frame is radially compressible for delivery within a sheath of a delivery catheter and is self-expandable for deployment within an annulus of the native valve. The main body and the ventricular anchor component are formed separately and are attached by a locking mechanism for reducing strain between the main body and the ventricular anchor component.