Abstract:
Herein is disclosed a magnetic resonance imaging antenna, including an inner conductor, an outer shield slideably displaceable with respect to the inner conductor, and an insulator electrically insulating the inner conductor from the outer shield. Herein is disclosed a biopsy needle antenna, including a magnetic resonance imaging antenna, having an outer shield, and an inner conductor electrically insulated from the outer shield by a dielectric; and a biopsy needle electrically connected to the inner conductor and electrically insulated from the outer shield by the dielectric. Herein is disclosed a method of obtaining a sample with magnetic resonance imaging guidance, including providing a sampling needle magnetic resonance imaging antenna, advancing the antenna to a structure from which the sample is to be taken, detecting magnetic resonance data by the antenna, and coupling the sample to the antenna.
Abstract:
Herein is disclosed a magnetic resonance imaging antenna, including an inner conductor, an outer shield slideably displaceable with respect to the inner conductor, and an insulator electrically insulating the inner conductor from the outer shield. Herein is disclosed a biopsy needle antenna, including a magnetic resonance imaging antenna, having an outer shield, and an inner conductor electrically insulated from the outer shield by a dielectric; and a biopsy needle electrically connected to the inner conductor and electrically insulated from the outer shield by the dielectric. Herein is disclosed a method of obtaining a sample with magnetic resonance imaging guidance, including providing a sampling needle magnetic resonance imaging antenna, advancing the antenna to a structure from which the sample is to be taken, detecting magnetic resonance data by the antenna, and coupling the sample to the antenna.
Abstract:
Herein is disclosed a probe, including a first electrode disposed at least partially on the probe surface, a second electrode disposed at least partially on the probe surface, a first conductor electrically coupled to the first electrode, a second conductor electrically coupled to the second electrode, and a reactive element electrically coupling the first conductor and the second conductor.
Abstract:
The end-effector (150) includes a sheath (152) and a medical device or needle carrier (154) that is disposed within the interior compartment (166) of the sheath. Aperture (162) is located in a portion of the sheath proximal a distal end of the sheath that is inserted into a natural or artificial cavity. This device is guided by a real-time imager.
Abstract:
Systems and methods for the evaluation of the urethra and periurethral tissues may involve an MRI coil adapted for insertion into the male, female or pediatric urethra. The MRI coil may be in electrical communication with an interface circuit made up of a tuning-matching circuit, a decoupling circuit and a balun circuit. The interface circuit may also be in electrical communication with a MRI machine. In certain practices, the present invention provides methods for the diagnosis and treatment of conditions involving the urethra and periurethral tissues, including disorders of the female pelvic floor, conditions of the prostate and anomalies of the pediatric pelvis.
Abstract:
A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures includes an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures, such as ablation of cardiac arrhythmias. The combined electrophysiology and imaging antenna catheter may further include an ablation tip, and be used as an intracardiac device to deliver energy to selected areas of tissue and visualize the resulting ablation lesions. The antenna utilized in the combined electrophysiology and imaging catheter for receiving MR signals is preferably of the coaxial or “loopless” type. High-resolution images from the antenna may be combined with low-resolution images from surface coils of the MR scanner to produce a composite image. A system for eliminating the pickup of RF energy in which intracardiac wires are detuned by filtering so that they become very inefficient antennas. An RF filtering system is provided for suppressing the MR imaging signal while not attenuating the RF ablative current. Steering means may be provided for steering the invasive catheter under MR guidance. Other ablative methods can be used such as laser, ultrasound, and low temperatures.
Abstract:
The present invention provides systems and methods for the evaluation of the urethra and periurethral tissues using an MRI coil adapted for insertion into the male, female or pediatric urethra. The MRI coil may be in electrical communication with an interface circuit made up of a tuning-matching circuit, a decoupling circuit and a balun circuit. The interface circuit may also be in electrical communication with a MRI machine. In certain practices, the present invention provides methods for the diagnosis and treatment of conditions involving the urethra and periurethral tissues, including disorders of the female pelvic floor, conditions of the prostate and anomalies of the pediatric pelvis.
Abstract:
A real-time imaging and visualization method and system that allows multiple field-of-view imaging on multiple receiver channels is disclosed. The method and system implement a semi-bit reversed modified phase-encoding scheme to acquire identical data over all receiver channels, and to reconstruct independently on each channel an image thereby providing multiple FOV images. The method and system provide for real-time catheter tracking where separate receiver channels collect anatomical roadmap data, guidewire data, and catheter data. The present invention uses a loopless antenna to acquire projection images thereby allowing the entire antenna and structures within its diameter of sensitivity to appear as a bright signal and a long narrow connected region. The present invention allows for very narrow FOV imaging for guidewire and catheter channels as well as full FOV imaging for roadmap image reconstruction. Thus, multiple FOV images are displayed together, improving visualization of the interventional device placement.
Abstract:
A coaxial cable which may be a magnetic resonance imaging coaxial cable is designed for enhanced safety so as to reduce the risk of excessive heating or burns to a user. The cable has an elongated axially oriented inner conductor and an axially oriented outer shield conductor in spaced relationship with respect thereto with a first dielectric material disposed therebetween. The outer shield conductor has an annular inner shield portion and segmented outer shield portions which are electrically connected to the inner shield portion. In certain preferred embodiments, a second dielectric material having a higher dielectric constant than the first dielectric material is disposed between the inner shield portion and the segmented outer shield portions. In one embodiment, an electrically conductive element extends between the segmented outer shield portions and the inner shield portion and terminates in spaced relationship therewith. In another embodiment, a capacitor may be introduced between the inner shield portion and the segmented outer shield portions.
Abstract:
A method of magnetic resonance imaging employs cylindrical coordinates and in one embodiment has an elongated catheter which is operatively associated with an RF pulse transmitting antenna and an RF pulse transmitting body coil. A main magnetic field is imposed on the region of interest. Circumferential phase encoding is accomplished by applying an initial RF pulse from either the catheter antenna or the body coil and subsequently applying an initial series of RF pulses with the source alternating between the antenna and the body coil. Radial phase encoding is effected by applying a first RF pulse which in a second embodiment is followed by a second RF pulse. A longitudinal gradient magnetic pulse is applied in the region of interest to spatially encode magnetic resonance signals. The cylindrical coordinate imaging is obtained by combining the circumferential phase encoding information the longitudinal magnetic encoding information with or without the radial phase encoding information. Other embodiments not employing catheter antennas employ two antennas with non-uniform phase profiles with the pulse sequences employed with the antennas. Corresponding apparatus is provided.