Abstract:
Methods for fabricating integrated circuits and FinFET transistors on bulk substrates with active channel regions isolated from the substrate with an insulator are provided. In accordance with an exemplary embodiment, a method for fabricating an integrated circuit includes forming fin structures overlying a semiconductor substrate, wherein each fin structure includes a channel material and extends in a longitudinal direction from a first end to a second end. The method deposits an anchoring material over the fin structures. The method includes recessing the anchoring material to form trenches adjacent the fin structures, wherein the anchoring material remains in contact with the first end and the second end of each fin structure. Further, the method forms a void between the semiconductor substrate and the channel material of each fin structure with a gate length independent etching process, wherein the channel material of each fin structure is suspended over the semiconductor substrate.
Abstract:
Embodiments herein provide device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of high mobility channel fins is formed over the retrograde doped layer, each of the set of high mobility channel fins comprising a high mobility channel material (e.g., silicon or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of high mobility channel fins to prevent carrier spill-out to the high mobility channel fins.
Abstract:
The present disclosure generally relates to semiconductor detectors for use in optoelectronic/photonic devices and integrated circuit (IC) chips, and methods for forming same. The present disclosure also relates to photodetectors integrated with waveguide stacks, more particularly, photodetectors with butt-end coupled waveguides. The present disclosure also relates to methods of forming such structures.
Abstract:
Structures for a grating coupler and methods of fabricating a structure for a grating coupler. A silicide layer is formed on a patterned section of a semiconductor layer. The grating structures of a grating coupler are formed over the silicide layer and the section of the semiconductor layer.
Abstract:
Structures for a directional coupler and methods of fabricating a structure for a directional coupler. A first section of a first waveguide core is laterally spaced from a second section of a second waveguide core. A coupling element is arranged either over or under the first section of the first waveguide core and the second section of the second waveguide core. The first and second waveguide cores are comprised of a material having a first refractive index, and the first coupling element is comprised of a material having a second refractive index that is different from the first refractive index. The first coupling element is surrounded by a side surface that overlaps with the first section of the first waveguide core and the second section of the second waveguide core.
Abstract:
Structures including a waveguide arrangement and methods of fabricating a structure that includes a waveguide arrangement. A second waveguide spaced in a lateral direction from a first waveguide, a third waveguide spaced in a vertical direction from the first waveguide, and a fourth waveguide spaced in the vertical direction from the second waveguide. The third waveguide is arranged in the lateral direction to provide a first overlapping relationship with the first waveguide. The fourth waveguide is arranged in the lateral direction to provide a second overlapping relationship with the second waveguide.
Abstract:
Structures for a waveguide bend and methods of fabricating a structure for a waveguide bend. A first waveguide core has a first section, a second section, and a first waveguide bend connecting the first section with the second section. The first waveguide core has a first side surface extending about an outer radius of the first waveguide bend. A second waveguide core also has a first section, a second section, and a second waveguide bend connecting the first section with the second section. The second waveguide core has a second side surface extending about an outer radius of the second waveguide bend. The first waveguide bend is spaced from the second waveguide bend in a first non-contacting relationship with a gap between the first side surface and the second side surface. The gap has a perpendicular distance selected to permit optical signal transfer between the first and second waveguide bends.
Abstract:
One illustrative device includes, among other things, a first resistive storage element; a second resistive storage element; and logic to couple the first resistive storage element and the second resistive storage element in a series arrangement in a first configuration and to couple the first resistive storage element and the second resistive storage element in a parallel arrangement in a second configuration.
Abstract:
Structures with waveguides in multiple levels and methods of fabricating a structure that includes waveguides in multiple levels. A waveguide crossing has a first waveguide and a second waveguide arranged to intersect the first waveguide. A third waveguide is displaced vertically from the waveguide crossing, The third waveguide includes a portion having an overlapping arrangement with a portion of the first waveguide. The overlapping portions of the first and third waveguides are configured to transfer optical signals between the first waveguide and the third waveguide.
Abstract:
Structures that include an optical component, such as a grating coupler, and methods of fabricating a structure that includes an optical component, such as a grating coupler. First and second layers are arranged over the optical component with the first layer arranged between the second layer and the optical component. The first and second layers are each composed of a tunable material having a refractive index that is a function of a bias voltage applied to the first layer and the second layer.