Abstract:
A hermetically sealed filtered feedthrough assembly includes an electrically conductive ferrule sealed by a first gold braze to an insulator disposed at least partially within a ferrule opening. A conductive wire is disposed within a via hole disposed through the insulator extending from a body fluid side to a device side. A second gold braze hermetically seals the conductive leadwire to the via hole. A capacitor is disposed on the device side having a capacitor dielectric body with a dielectric constant k that is greater than 0 and less than 1000. The capacitor is the first filter capacitor electrically connected to the conductive leadwire coming from the body fluid side into the device side. An active electrical connection electrically connects the conductive leadwire to the capacitor active metallization. A ground electrical connection electrically connects the capacitor ground metallization to the ferrule and housing of the active implantable medical device.
Abstract:
A method for manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of first forming a ceramic reinforced metal composite (CRMC) paste by mixing platinum with a ceramic material to form a CRMC material, subjecting the CRMC material to a first sintering step to thereby form a sintered CRMC material, ball-milling or grinding the sintered CRMC material to form a powdered CRMC material; and then mixing the powdered CRMC material with a solvent to form the CRMC paste. The method further includes forming an alumina ceramic body in a green state, forming at least one via hole through the alumina ceramic body, filling the via hole with the CRMC paste, drying the ceramic body including the CRMC paste to form a first CRMC material filling the via hole, forming a second via hole through the first CRMC material, providing a metal core in the second via hole, and subjecting the ceramic body including the first CRMC material and the metal core to a second sintering step to thereby form the dielectric body. The dielectric body is then sealed in a ferrule opening to form a feedthrough.
Abstract:
A hermetically sealed filtered feedthrough assembly attachable to an AIMD includes an insulator hermetically sealing the opening of a ferrule with a gold braze. The ferrule includes a peninsula extending into the ferrule opening and the insulator has a cutout matching the peninsula. A sintered platinum-containing paste hermetically seals at least one via hole extending through the insulator. At least one capacitor is disposed on the device side. An active electrical connection electrically connects the capacitor active metallization to the sintered paste. A ground electrical connection electrically connects the capacitor ground metallization disposed within a capacitor ground passageway to the portion of the gold braze along the ferrule peninsula. The dielectric of the capacitor may be less than 1,000 k.
Abstract:
A filtered feedthrough assembly for an active implantable medical device (AIMD) includes an insulator hermetically sealed to an opening of an electrically conductive ferrule. A ceramic reinforced metal composite of platinum and alumina (CRMC) material is disposed in an insulator via hole surrounding a substantially pure platinum fill. A capacitor disposed on the insulator device side has a capacitor dielectric with a dielectric constant k that is greater than 0 and less than 1000. Coming from the body fluid side to the device side of the AIMD, the capacitor is the first filter capacitor electrically connected to the substantially pure platinum fill. An active electrical connection electrically connects the substantially pure platinum fill to the capacitor active metallization. A ground electrical connection electrically connects the capacitor ground metallization to the ferrule and subsequently to the housing of the AIMD
Abstract:
A hermetically sealed filtered feedthrough assembly includes an electrically conductive ferrule sealed by a first gold braze to an insulator disposed at least partially within a ferrule opening. A conductive wire is disposed within a via hole disposed through the insulator extending from a body fluid side to a device side. A second gold braze hermetically seals the conductive leadwire to the via hole. A capacitor is disposed on the device side having a capacitor dielectric body with a dielectric constant k that is greater than 0 and less than 1000. The capacitor is the first filter capacitor electrically connected to the conductive leadwire coming from the body fluid side into the device side. An active electrical connection electrically connects the conductive leadwire to the capacitor active metallization. A ground electrical connection electrically connects the capacitor ground metallization to the ferrule and housing of the active implantable medical device.
Abstract:
A hermetically sealed feedthrough filter assembly is attachable to an active implantable medical device and includes an insulator substrate assembly and a feedthrough filter capacitor disposed on a device side. A conductive leadwire has a proximal leadwire end extending to a distal leadwire end, wherein the proximal leadwire end is connectable to electronics internal to the AIMD. The distal leadwire end is disposed at least partially through a first passageway of the feedthrough filter capacitor and is in contact with, adjacent to or near a device side conductive fill. A first electrically conductive material makes a three-way electrically connection that electrically connects the device side conductive fill to an internal metallization of the feedthrough filter capacitor and to the distal leadwire end. A second electrically conductive material electrically connects an external metallization of the feedthrough filter capacitor to a ferrule or an AIMD housing.
Abstract:
A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
Abstract:
A hermetically sealed feedthrough subassembly attachable to an active implantable medical device includes a first conductive leadwire extending from a first end to a second end, the first conductive leadwire first end disposed past a device side of an insulator body. A feedthrough filter capacitor is disposed on the device side. A second conductive leadwire is disposed on the device side having a second conductive leadwire first end at least partially disposed within a first passageway of the feedthrough filter capacitor and having a second conductive leadwire second end disposed past the feedthrough filter capacitor configured to be connectable to AIMD internal electronics. The second conductive leadwire first end is at, near or adjacent to the first conductive leadwire first end. A first electrically conductive material forms a three-way electrical connection electrically connecting the second conductive leadwire first end, the first conductive leadwire first end and a capacitor internal metallization.
Abstract:
An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
Abstract:
A hermetic terminal assembly for an AIMD includes a shielded three-terminal flat-through EMI energy dissipating filter and a hermetically sealed feedthrough configured to be attachable to the ferrule or AIMD housing. The flat-through filter includes a first shield plate, an active electrode plate, and a second shield plate where the shield plates are electrically coupled to a metallization which in turn is coupled either to the ferrule or AIMD housing. The feedthrough includes an alumina substrate comprised of at least 96% alumina and a via hole with a substantially closed pore and substantially pure platinum fill. The platinum fill forms a tortuous and mutually conformal knitline or interface between the alumina substrate and the platinum fill, wherein the platinum fill is electrically coupled to at least one active electrode plate in non-conductive relationship to the at least one first and second shield plates.