摘要:
A method is provided for fabricating a dual damascene structure on a substrate with a first dielectric layer, an etching stop layer, a second dielectric layer, and a hard mask layer formed on it. The first step is to define the hard mask layer in order to form the first hole, which corresponds to the position of the conductive layer exposing the second dielectric layer. Then, an etching process, including an etching step with medium SiO.sub.2 /SiN etching selectivity and an over-etching step with high SiO.sub.2 /SiN etching selectivity, is performed to form the second hole and the third hole. Finally, a glue/barrier layer and a metal layer are filled into the second hole and the third hole, thus accomplishing a dual damascene structure.
摘要:
A method of forming a DRAM includes forming a transfer FET on a substrate, the FET having a gate on a gate oxide layer above the substrate and a first and second source/drain region in the substrate on either side of a channel region under the gate. The first and second source/drain regions are typically exposed or nearly exposed in a spacer etch process. A silicon nitride etch stop layer is deposited over the entire structure and then a thick layer of oxide is deposited on the device. Chemical mechanical polishing is performed to provide a planar surface on the thick oxide layer. An opening is formed through the thick layer of oxide above the first source/drain region, stopping at the etch stop layer. The etch stop layer is removed within the opening in the thick layer of oxide and the underlying thin oxide layer is etched. A capacitor electrode can then be formed in contact with the exposed portion of the first source/drain region. A similar self-aligned method can be used to form the bit line contact for the device using the etch stop layer as a stop for the bit line contact etch. Practice of the method provides a manufacturing method having improved reliability and ease of use, particularly when practiced for DRAM capacitors that incorporate high dielectric constant dielectrics. The materials preferred for use within such DRAM capacitors have smaller process margins and so particularly benefit from the improved structure and process.
摘要:
A method for forming dual damascene is provided. First, a first inter-metal dielectric layer and a stop layer is formed on a substrate, and then a first photoresist pattern including a via hole and a dummy metal line is patterned and the stop layer is etched for forming via hole. Next, a second inter-metal dielectric layer is deposited and then a second photoresist pattern is patterned for forming metal line trench by etching. Afterwards, a glue layer and a metal layer are blanketed and the dual damascene structure is formed by chemical mechanical polishing.
摘要:
The present invention discloses a method for modifying a carbon nanotube electrode interface, which modifies carbon nanotubes used as a neuron-electrode interface by performing three stages of modifications and comprises the steps of: carboxylating carbon nanotubes to provide carboxyl functional groups and improve the hydrophilicity of the carbon nanotubes; acyl-chlorinating the carboxylated carbon nanotubes to replace the hydroxyl functional groups of the carboxyl functional groups with chlorine atoms; and aminating the acyl-chlorinated carbon nanotubes to replace the chlorine atoms with a derivative having amine functional groups at the terminal thereof. The modified carbon nanotubes used as the neuron-electrode interface has lower impedance and higher adherence to nerve cells. Thus is improved the quality of neural signal measurement. The present invention also discloses a microelectrode array, wherein the neuron-electrode interface uses carbon nanotubes modified according to the method of the present invention.
摘要:
The present invention discloses a soluble and air-stable perylene diimide (PDI) derivative to function as an N-type organic semiconductor material. In the PDI derivative of the present invention, the core thereof is substituted by electron withdrawing groups, and the side chains thereof are substituted by benzene functional groups, whereby are promoted the solubility and air-stability of the molecule. The PDI derivative of the present invention can be used to fabricate an organic semiconductor element via a soluble process at a low temperature and under an atmospheric environment.
摘要:
A full-spectrum absorption solar cell adopts cobalt-doped tin dioxide as an N-type material. Thereby, a solar cell of the present invention can be fabricated by a spray method in a hot pressing fabrication process. The present invention does not need to fabricate a solar cell in a vacuum or furnace system and thus can solve the high cost problem of the conventional technology. The N-type cobalt-doped layer can absorb full spectrum of sunlight. The N-type cobalt-doped layer can be used to fabricate a solar cell with a low-temperature fabrication process. Thus, the present invention does not need to adopt a high-temperature resistant substrate (such as silicon chip or glass) used in the conventional high-temperature fabrication process but can adopt a substrate made of plastic. And, the conversion efficiency of the invention can achieve 1.2%, it is a significant improvement over the oxide-based nanostructures heterojunction solar cells in the world.
摘要:
A method for fabricating interconnections with carbon nanotubes of the present invention comprises the following steps: forming a dual-layer that contains a catalytic layer and an upper covering layer on the periphery of a hole connecting with a substrate; and growing carbon nanotubes on the catalytic layer with the upper covering layer covering the carbon nanotubes. The present invention grows the carbon nanotubes between the catalytic layer and the upper covering layer. The upper covering layer protects the catalytic layer from being oxidized and thus enhances the growth of the carbon nanotubes. The carbon nanotubes are respectively connected with the lower substrate and an upper conductive wire via the catalytic layer and the upper covering layer, which results in a lower contact resistance. Moreover, the upper covering layer also functions as a metal-diffusion barrier layer to prevent metal from spreading to other materials via diffusion or other approaches.
摘要:
A method of fabricating an interconnect structure is described. A substrate is provided. A patterned interfacial metallic layer is formed on the substrate. An amorphous carbon insulating layer or a carbon-based insulating layer is formed covering the substrate and the interfacial metallic layer. A conductive carbon line or plug is formed in the amorphous carbon or carbon-based insulating layer electrically connected with the interfacial metallic layer. An interconnect structure is also described, including a substrate, a patterned interfacial metallic layer on the substrate, an amorphous carbon insulating layer or a carbon-based insulating layer on the substrate, and a conductive carbon line or plug disposed in the amorphous carbon or carbon-based insulating layer and electrically connected with the interfacial metallic layer.
摘要:
A carbon nanotube is described, to which quantum dots are attached through non-covalent bonding via linking molecules bonded to the quantum dots. A method of visualizing a carbon nanotube is also described, wherein quantum dots are attached to the carbon nanotube through non-covalent bonding via linking molecules bonded to the quantum dots, and then the quantum dots are made emit light. This invention allows carbon nanotubes, even those in a wet condition, to be visualized by a simple fluorescent optical microscope. Thereby, the difficulties on preparing specimens and the need of sophisticated instruments can be reduced. This invention also exhibits great potential for the application of carbon nanotubes under a wet condition.
摘要:
A novel multifunctional nano-probe interface is proposed for applications in neural stimulation and detecting. The nano-probe interface structure consists of a carbon nanotube coated with a thin isolation layer, a micro-electrode substrate array, and a controller IC for neural cell recording and stimulation. The micro-electrode substrate array contains wires connecting the carbon nanotube with the controller IC, as well as microfluidic channels for supplying neural tissues with essential nutrition and medicine. The carbon nanotube is disposed on the micro-electrode substrate array made by silicon, coated with a thin isolation layer around thereof, and employed as a nano-probe for neural recording and stimulation.