Abstract:
The present invention provides a radial foil bearing for supporting a high-speed rotating shaft. The radial foil bearing comprises a top foil (1): a key (2) welded to a cut portion of the top foil; an inner bump coil (3) disposed outwards of the top foil, the inner bump being formed of a wider and higher bump and a narrower and lower bump alternately arranged; an outer bump foil (4) disposed outwards of the inner coil, the outer bump having a height lower the that of the narrower and lower bump of the inner bump foil; a bump sheet (5) for fixing the inner bump and the outer bump; and a bearing housing (6) disposed outwards of the bump sheet and having a key groove (7).
Abstract:
The present invention relates to a reflection plate for a backlight unit in a liquid crystal display device, and more particularly, to a reflection plate for a backlight unit in a liquid crystal display device, which is made of a thermoplastic thermal conductive resin composition having a thermal conductivity of at least 0.35 W/mK, thereby effectively solving the thermal problem of the backlight unit, and having excellent properties such as shock resistance, heat resistance, mechanical strength, and the like, as well as having excellent reflectivity, thereby improving the durability of the liquid crystal display device. Furthermore, the present invention relates to a backlight unit of a liquid crystal display device, comprising a reflection plate positioned at a lower portion of a lamp of the backlight unit for reflecting the light coming out of the lamp, a supporting rod for the lamp, and a lower plate functioning as a heat sink, wherein the reflection plate and the lower plate are made of the same material, thereby effectively solving the thermal problem of the backlight unit, and simplifying the manufacturing process.
Abstract:
In a process for etching poly Si gate stacks with raised STI structure where the thickness of poly Si gates at the AA and STI are different, the improvement comprising: a) etching a gate silicide layer+a poly Si 2 layer; b) forming a continuous poly Si passivation layer on sidewalls of the silicide and poly Si 2 layers and at the interface of the poly Si 2 layer and a poly Si 1 layer and affecting thermal oxidation to form an underlying thin Si oxide gate layer; c) affecting a Si oxide breakthrough etch to clear the passivation layer at interface of the poly Si 2 and the poly Si 1 layers while leaving intact the passivation layer on the sidewalls of the silicide and the poly Si 2 layers; and d) etching the poly Si 1 layer with an oxide selective process to preserve the underlying thin gate oxide and thin passivation layer at the sidewall to obtain vertical profiles of poly Si gate stacks both at the AA and the STI oxide.
Abstract:
A method of fabricating a magnetic random access memory (MRAM) device is disclosed. The method reduces the number of mask steps and processing steps required to fabricate the MRAM device. A first conductive layer and a sense layer are patterned in a first mask step. A subsequent etching step forms a bottom electrode and a sense layer that are continuous with each other in a first direction. A second conductive layer and a plurality of layers of material required to form a magnetic tunnel junction stack are patterned in a second mask step. A subsequent etching step forms a top electrode and a plurality of layers of material that are continuous with each other in a second direction, and a plurality of discrete sense layers. The discrete sense layers and the plurality of layers of material define a plurality of magnetic tunnel junction devices.
Abstract:
The present invention provides a magnetic memory device that includes a magnetic memory cell switchable between two states by the application of a magnetic field wherein the magnetic field for such switching is dependent in part on a memory cell temperature. The device further includes at least one heater element proximate to the magnetic memory cell and series connected with the magnetic memory cell for heating of the magnetic memory cell. The device also includes a circuit for selectively applying the electrical current through the at least one heater element so as to heat the cell and facilitate cell state-switching.
Abstract:
A torque converter for a vehicle includes a front cover integrally formed with a boss to which a crank shaft of an engine side is connected, an impeller connected to the front cover to rotate together with the front cover, a turbine disposed facing the impeller, a stator disposed between the impeller and the turbine to convert flow of oil directed from the turbine, and a lockup clutch mechanism for directly connecting the engine to the turbine. The impeller, turbine, stator define a torque fluid actuating portion. An actuating chamber C has a ratio (D2/D1) of an inner diameter D2 to an outer diameter D1 is in a range of about 0.55-0.61.
Abstract:
A magnetic tunnel junction device with a compositionally modulated electrode and a method of fabricating a magnetic tunnel junction device with a compositionally modulated electrode are disclosed. An electrode in electrical communication with a data layer of the magnetic tunnel junction device includes a high resistivity region that has a higher resistivity than the electrode. As a result, a current flowing through the electrode generates joule heating in the high resistivity region and that joule heating increases a temperature of the data layer and reduces a coercivity of the data layer. Consequently, a magnitude of a switching field required to rotate an alterable orientation of magnetization of the data layer is reduced. The high resistivity region can be fabricated using a plasma oxidation, a plasma nitridation, a plasma carburization, or an alloying process.
Abstract:
A method of making a magnetic tunnel junction device is disclosed. The magnetic tunnel junction device includes a magnetic tunnel junction stack and an electrically non-conductive spacer in contact with a portion of the magnetic tunnel junction stack. The spacer electrically insulates a portion of the magnetic tunnel junction stack from an electrically conductive material used for a via that is in contact with the magnetic tunnel junction stack and a top conductor. The spacer can also prevent an electrical short between a bottom conductor and the top conductor. The spacer can prevent electrical shorts when the magnetic tunnel junction stack and a self-aligned via are not aligned with each other.
Abstract:
A hardened nano-imprinting stamp and a method of forming a hardened nano-imprinting stamp are disclosed. The hardened nano-imprinting stamp includes a plurality of silicon-based nano-sized features that have an hardened shell of silicon carbide, silicon nitride, or silicon carbide nitride. The hardened shell is made harder than the underlying silicon by a plasma carburization and/or a plasma nitridation process. During the plasma process atoms of carbon and/or nitrogen bombard and penetrate a plurality of exposed surfaces of the nano-sized features and chemically react with the silicon to form the hardened shell of silicon carbide, silicon nitride, or silicon carbide nitride. The lifetime, durability, economy, and accuracy of the resulting hardened nano-imprinting stamp are improved.
Abstract:
A method of making a magnetic tunnel junction device is disclosed. The method includes forming an etch stop layer on a magnetic tunnel junction stack. In subsequent etching steps, the etch stop layer protects one or more layers of magnetic material in the magnetic tunnel junction stack from chemical erosion caused by an etch material, such as an etch material that includes the chemical fluorine (F), for example. The etch stop layer is made from an electrically conductive material. The method also reduces the number of process steps by forming a self-aligned via in a dielectric layer. A deposition of a second electrically conductive material completely fills the self-aligned via and covers the dielectric layer to form a dual-damascene conductor in one processing step. The dual-damascene conductor includes a via positioned in the self-aligned via and a top conductor in contact with the dielectric layer.