Abstract:
An aspect of the present invention provides a nonvolatile memory that includes a memory cell array including a data storage area to store a data, and a data invert flag storage area to store a data invert flag indicating whether or not the data is inverted. The memory cell array outputs selected data and a data invert flag related to the selected data. A state machine determines whether or not the number of memory cells to which a bias voltage is applied is equal to or greater than a predetermined number when writing data into the memory cell array. The state machine instructs a data controller to transfer inverted data and a data invert flag if it is equal to or greater than the predetermined number.
Abstract:
A non-volatile semiconductor memory device capable of performing page programming at high speeds is provided. This nonvolatile memory device includes a cell array with a matrix of rows and columns of electrically writable and erasable nonvolatile memory cells, and a write control circuit which writes or “programs” one-page data into this cell array at a plurality of addresses within one page. The write control circuit is operable to iteratively perform iteration of a write operation for the plurality of addresses corresponding to one page and iteration of a verify-read operation of the plurality of addresses after writing until verify-read check is passed with respect to every address involved. Regarding an address or addresses with no cells to be written any more, the write control circuit skips the write operation and the after-write verify-read operation.
Abstract:
A non-volatile semiconductor memory device comprises a plurality of blocks each having a plurality of memory cells to be erased at a time and a decoder for selecting the memory cells, each of the blocks having a block decoder for latching a selection signal thereof in pre-programming and for selecting all of the latched blocks by the selection signal at the same time, a sense amplifier, and an address control circuit for controlling a sequence, the sequence including counting addresses of the memory cells in erasing and erasing all of the selected memory cells after pre-programming, all of the blocks having the latched selection signal being controlled to be collectively erased by the address control circuit.
Abstract:
A semiconductor integrated circuit device includes a first memory cell array corresponding to bank 0, a second memory cell array corresponding to bank 1, first address transition signal generating circuits which detect transitions of input addresses and generate first address transition signals, a second address transition signal generating circuit which pre-detects an end of automatic execution of bank 0 or bank 1 and generates a second address transition signal, and a read start trigger output circuit. The read start trigger output circuit outputs a read start trigger signal on the basis of the first address transition signals and the second address transition signal.
Abstract:
An aspect of the present invention provides a nonvolatile memory that includes a memory cell array including a data storage area to store a data, and a data invert flag storage area to store a data invert flag indicating whether or not the data is inverted. The memory cell array outputs selected data and a data invert flag related to the selected data. A state machine determines whether or not the number of memory cells to which a bias voltage is applied is equal to or greater than a predetermined number when writing data into the memory cell array. The state machine instructs a data controller to transfer inverted data and a data invert flag if it is equal to or greater than the predetermined number.
Abstract:
A semiconductor memory has a memory cell array, a boosted voltage generator to generate a boosted voltage and a decoder to select memory cells in said memory cell array in response to an address signal. The voltage generator is activated in response to input of a first command, and kept active for a period of repeated input of a second command to control for the voltage generator, following the first command. The semiconductor memory may be provided with a regular operation mode in which the voltage generator is controlled to be in an active or inactive state by means of a first command signal in response to a predetermined signal, and a successive operation mode in which the voltage generator is kept active by a second command signal in response to another predetermined signal.
Abstract:
There is disclosed a semiconductor integrated circuit device comprising a memory cell array, row decoder, sense amplifier, column gate with two or more stages connected in series, column gate driving circuit, data latch, multiplexer, and address control circuit, and the multiplexer sequentially selects data corresponding to a predetermined address from a plurality of data latched by the data latch. The address control circuit reverses a driving signal for driving at least one stage of the column gate with two or more stages connected in series and selects the columns designated by the next selected plurality of addresses, while the multiplexer sequentially selects the data corresponding to the predetermined address.