Abstract:
Disclosed herein is a solid-state image pickup apparatus, including a pixel array section in which a unit pixel including a photoelectric conversion section and a charge detection section for detecting charge generated by photoelectric conversion by the photoelectric conversion section is disposed; a driving section adapted to carry out driving of reading out a signal of the unit pixel divisionally by twice as a first signal and a second signal; and a signal processing section adapted to set the first signal read out first from the unit pixel as a reference voltage for a processable input voltage range of the signal processing section, adjust the reference voltage so that the first and second signals may be included in the input voltage range and carry out signal processing for the first and second signals using the adjusted reference voltage.
Abstract:
A solid state imaging device with pixels in a two-dimensional array, a controller which performs window cutting on signals read out of the pixel array in multiple column units on a column-address basis, and a selector which, when the cutting window overlaps with a multiple column unit, holds signals in a present multiple column unit and in a previous column unit, and then outputs selected consecutive signals.
Abstract:
A data transfer circuit includes at least one data transfer line that transfers digital data, at least one data detecting circuit connected to the transfer line, holding circuits that hold digital values corresponding to input levels and that transfer the digital values to the transfer line, a scanning circuit that selects a holding circuit from among the holding circuits, at least one test-pattern generating circuit that generates a predetermined digital value, the test-pattern generating circuit being connected to the transfer line, at least one test-column scanning circuit that selects the test-pattern generating circuit, and a start-pulse selecting circuit that controls starting of the scanning circuit and starting of the test-column scanning circuit. The start-pulse selecting circuit has a function of transferring the predetermined digital value to the data transfer line by activating the test-pattern generating circuit via the test-column scanning circuit.
Abstract:
A solid-state imaging device includes a photodetector which is formed on a substrate and is configured to generate signal charge by photoelectric conversion, a floating diffusion configured to receive the signal charge generated by the photodetector, a plurality of MOS transistors including a transfer transistor that transfers the signal charge to the floating diffusion and an amplification transistor that outputs an pixel signal corresponding to a potential of the floating diffusion, a multi-wiring layer which is formed in a layer higher than the substrate and is composed of a plurality of wiring layers electrically connected to the MOS transistors via contact portions, and a light-shielding film that is constituted by a bottom wiring layer disposed in a layer higher than the substrate and lower than the multi-wiring layer.
Abstract:
A data processor includes: a reference signal generator generating a reference signal that gradually varies to enhance an amplitude of the processing signal; a comparator comparing the processing signal with the reference signal generated by the reference signal generator; a count period controller determining to perform a real number count operation or a complement number count operation; a counter performing the count operation during the count period determined by the count period controller and acquiring a predetermined level of digital data by storing the count value at the time of completion of the count operation; and a corrector acquiring the digital data as a value of a real number by correcting the complement number count operation. The count period controller independently controls the real number count operation and the complement number count operation of the counter on the basis of a predetermined criterion.
Abstract:
A method of driving a solid-image-pickup device is provided. The driving method includes the steps of converting light incident on a plurality of pixels arranged in matrix form into an electric signal, selecting and controlling the pixels for each of rows and/or columns, and scanning the pixels in sequence, converting at least one analog signal obtained from at least one of the selected and controlled pixels into a first digital signal, the at least one pixel corresponding to a first group of rows and/or columns, and performing first counting for data on a result of the conversion, and converting at least one analog signal obtained from at least one of the selected and controlled pixels into a second digital signal, the at least one pixel corresponding to a second group of rows and/or columns, and performing second counting for data on a result of the conversion. A period where the first counting is performed is separate from a period where the second counting is performed.
Abstract:
A semiconductor integrated circuit device includes a main cell array, a fuse cell array, main cell word lines arranged at the main cell array, and fuse cell word lines arranged at the fuse cell array. The fuse cell word lines are formed in a same direction as a direction of the main cell word lines.
Abstract:
A semiconductor memory device comprises memory cell blocks, a first redundancy cell array for each of the memory blocks, a redundancy cell block, a second redundancy cell array for the redundancy block, a first defect rescuing circuit configured to output a replacement signal for replacing a defective cell array in the redundancy block with the first redundancy array, and a second defect rescuing circuit configured to output a replacement signal for replacing a defective memory block with the redundancy block, wherein the first defect rescuing circuit has a gate circuit which outputs the output replacement signal of the first address sensing circuit as valid at an address at which the second defect rescuing circuit is not implemented, and which outputs a signal indicating which block is a defective block outputted by the second defect rescuing circuit as valid at an address at which the second defect rescuing circuit is implemented.
Abstract:
A memory cell is connected to a cell-based bit line. The cell-based bit line is connected to a bit line via a Y decoder. The bit line is connected to a sense bit line via a separation circuit. This sense bit line is connected to a sense line via a bias circuit. An amplifier circuit amplifies a signal voltage on the sense line together with a reference voltage for sensing data. The sense line is connected with a sense line initialization circuit for setting the sense line to a specified voltage. The bit line is connected with a bit line initialization circuit for setting the bit line to a specified voltage. Both the sense line initialization circuit and the bit line initialization circuit are activated in a given period before the amplifier circuit operates to sense data. Thus, the sense line and the bit line are set to specified voltages.
Abstract:
A voltage-level shifter has a first and a second power supply terminal to which a first and a second potential are supplied, respectively, the second potential being lower than the first potential; a first input terminal to which a first input signal is supplied, the first input signal having a high and a low level according to the first and the second potentials; a second input terminal to which a second input signal is supplied, the second input signal being an inverted signal of the first input signal. The voltage-level shifter also has a first PMOS transistor having a source connected to the first power supply terminal, a gate connected to the first input terminal, and a drain connected to a first output terminal for outputting a first output signal; a second PMOS transistor having a source connected to the first power supply terminal, a gate connected to the second input terminal, and a drain connected to a second output terminal for outputting a second output signal that is an inverted signal of the first output signal; a first NMOS transistor having a drain connected to the first output terminal and a gate connected to the first input terminal; a second NMOS transistor having a drain connected to the second output terminal and a gate connected to the second input terminal; a third NMOS transistor having a source connected to the second power supply terminal, drain connected to the source of the first NMOS transistor, and a gate connected to the second output terminal; and a fourth NMOS transistor having a source connected to the second power supply terminal, a drain connected to the source of the second NMOS transistor, and a gate connected to the first output terminal.