摘要:
A method for direct molecular adhesion of an electronic compound (6) on a polymer (4) is described. The polymer (4) is coated with a bonding layer (5), for example silicon oxide, which enables the problems caused by the presence of hydrocarbons to be overcome. The method makes it possible to produce adhesive-free three-dimensional structures (10).
摘要:
A method for preparing an oxidized surface of a first wafer for bonding with a second wafer. The method includes treating the oxidized surface with a solution of NH4OH/H2O2 at treatment parameters sufficient to etch about 10 Å to about 120 Å from the wafer surface, followed by treating the etched surface with hydrochloric acid species at a temperature below about 50° C. for a duration of less than about 10 minutes to remove isolated particles from the oxidized surface. This method cleans the wafer surface without increasing roughness or creating rough patches thereon, and thus provides a cleaned surface capable of providing an increased bonding energy between the first and second wafers when those surfaces are bonded together. This cleaning process is advantageously used in a thin layer removal process to fabricate a semiconductor on insulator structure.
摘要翻译:一种用于制备用于与第二晶片接合的第一晶片的氧化表面的方法。 该方法包括在处理参数下处理含有NH 4 OH / H 2 O 2 O 2的溶液的氧化表面,所述处理参数足以蚀刻至约 约120埃,然后在低于约50℃的温度下用盐酸物质处理蚀刻表面,持续时间小于约10分钟以从氧化表面除去分离的颗粒。 该方法清洁晶片表面而不会增加粗糙度或在其上产生粗糙的贴片,从而提供了当这些表面粘接在一起时能够在第一和第二晶片之间提供增加的结合能的清洁表面。 该清洁方法有利地用于薄层去除工艺以制造绝缘体上半导体结构。
摘要:
This invention relates to a process for treatment of a multi-layer wafer with materials having differential thermal characteristics, the process comprising a high temperature heat treatment step that can generate secondary defects, characterised in that this process includes a wafer surface preparation step before the high temperature heat treatment step.
摘要:
This invention relates to a process for treatment of a multi-layer wafer with materials having differential thermal characteristics, the process comprising a high temperature heat treatment step that can generate secondary defects, characterised in that this process includes a wafer surface preparation step before the high temperature heat treatment step.
摘要:
Method for producing a stacked structure by obtaining at least two crystalline parts by detaching them from a same initial structure, each crystalline part having one face created by the detachment having a tilt angle with a reference crystalline plane of the initial structure. Structures are formed from the crystalline parts, each structure having a face to be assembled that has a controlled tilt angle in relation to the tilt angle of the created face of the corresponding crystalline part. The structures are assembled while controlling their relative positions, rotating in an interface plane, in relation to relative positions of respective crystalline parts within the initial structure, to obtain a controlled resulting tilt angle at the interface between the structures. The method may find application particularly in microelectronics, optics, and optoelectronics.
摘要:
The invention relates to the preparation of a thin layer comprising a step in which an interface is created between a layer used to create said thin layer and a substrate, characterized in that said interface is made in such way that it is provided with at least one first zone (Z1) which has a first level of mechanical strength, and a second zone (Z2) which has a level of mechanical strength which is substantially lower than that of the first zone. Said interface can be created by glueing surfaces which are prepared in a differentiated manner, by a layer which is buried and embrittled in a differentiated manner in said zones, or by an intermediate porous layer.
摘要:
A process and device for separating two semi-conductor substrate wafers along an interface. The process includes forming a cavity, and initiating separation by applying force to the interface through the cavity. The device utilizes fluid or gas, and pressure chambers, to subject adherent faces of the interface to at least one of chemical or mechanical action.
摘要:
A process for transfer of at least one thin film of solid material delimited in an initial substrate. The process includes a step in which a layer of inclusions is formed in the initial substrate at a depth corresponding to the required thickness of the thin film. These inclusions are designed to form traps for gaseous compounds which subsequently are implanted. In a subsequent step gaseous compounds are implanted in a manner to convey the gaseous compounds into the layer of inclusions. The dose of implanted gaseous compounds is made sufficient to cause the formation of micro-cavities to form a fracture plane along which the thin film can be separated from the remainder of the substrate.
摘要:
The invention relates to a device comprising microstructures or nanostructures on a support, characterized in that the support comprises: a) a substrate (1) comprising at least one part composed of a crystalline material, this part having a surface (2) with a stress field or a topology associated with a stress field, the stress field being associated with dislocations, b) an intermediate layer (3) bonded to the surface (2), and having a thickness and/or composition and/or a surface state enabling transmission of said stress field through this layer as far as its free face that supports microstructures or nanostructures (4).
摘要:
A heterojunction photovoltaic cell includes at least one crystalline silicon oxide film directly placed onto one of the front or rear faces of a crystalline silicon substrate, between said substrate and a layer of amorphous or microcrystalline silicon. The thin film is intended to enable the passivation of said face of the substrate. The thin film is more particularly obtained by radically oxidizing a surface portion of the substrate, before depositing the layer of amorphous silicon. Moreover, a thin layer of intrinsic or microdoped amorphous silicon can be placed between said think film and the layer of amorphous or microcrystalline silicon.