Abstract:
Techniques for radio resource measurement (RRM) that support directionality, as well as scheduled media access techniques are described. For instance, a measurement request may be transmitted from a first device to a second device. This measurement request directs the second device to take one or more measurements of a wireless channel. Various characteristics for the one or more measurements may be included in the measurement request. For example, the measurement request may indicate at least one directional parameter and at least one timing parameter for the one or more measurements. In response to the request, the first device receives a measure report that includes measured values for each of the one or more measurements.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of wireless communication. For example, a wireless communication unit may include a Multi Media-Access-Control (MAC) Address Station-Management-Entity (MM-SME) managing a plurality of MAC entities having a respective plurality of MAC addresses. The wireless communication unit may transmit a frame including a Multi-MAC-Addresses-Element (MMAE), which includes two or more MAC addresses of the plurality of MAC addresses and a control field defining at least one common communication attribute to be applied to the two or more MAC addresses.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of beam selection for beamformed communication. For example, an apparatus may include a controller to control a plurality of antenna subarrays to form a plurality of directional beams for communicating a beamformed diversity wireless transmission over a plurality of selected directional links, which are selected based on at least one predefined selection metric.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wide-bandwidth data frame. For example, an apparatus may include a controller to generate at least one wide-bandwidth data frame to be transmitted over a wide-bandwidth millimeter-Wave (mmWave) channel, the wide-bandwidth mmWave channel including a plurality of mmWave channels; and a transmitter to transmit a plurality of reservation frames over the plurality of mmWave channels, a reservation frame of the plurality of reservation frames including a duration value corresponding to a duration of the wide-bandwidth data frame and a wide-bandwidth indication to indicate that the wide-bandwidth data frames are to be transmitted over the wide-bandwidth mmWave channel, the transmitter to transmit the at least one wide-bandwidth data frame over the wide-bandwidth mmWave channel.
Abstract:
Embodiments of a user station (STA) and methods for operating in a millimeter-wave basic service set (BSS) are generally described herein. In some embodiments, a STA transmits a request, using a first channel with a first bandwidth, for an allocation to communicate data on a second channel with a second bandwidth different from the first bandwidth. The request can include a directional multi-gigabit (DMG) traffic specification (TSPEC) element with a value representative of the second bandwidth. The STA may receive the allocation of the second bandwidth in an Extended Schedule element. The STA may transmit data on the second channel with the second bandwidth responsive to receiving the allocation.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of multi-user (MU) wireless communication. For example, a wireless station may be configured to generate a MU Physical Layer Convergence Protocol (PLCP) Protocol Data Unit (PPDU) including a header field and a plurality of Media Access Control (MAC) Protocol Data Units (MPDUs) to a respective plurality of users, the header field including an indication of a plurality of lengths of respective ones of the plurality of MPDUs, one or more MPDUs of the plurality of MPDUs being followed by one or more respective PHY padding portions extending to an end of a longest MPDU of the plurality of MPDUs; and process transmission of the MU PPDU to the plurality of users over a wireless communication band.
Abstract:
Devices, systems and methods of communication over multiple wireless communication frequency bands. For example, a multiple frequency band (multi-band) wireless communication device may include at least two radios to communicate over at least two different frequency bands; and a common station management entity (SME) operably coupled to the at least two radios, and configured to manage parallel and simultaneous operation of the at least two radios.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of beamformed communication with space block coding. For example, an apparatus may include a controller to control a plurality of antenna subarrays to form a plurality of directional beams directed in a plurality of different directions for communicating a multi-input-multi-output (MIMO) wireless transmission, which is encoded according to a space-block coding scheme.
Abstract:
Disclosed herein are techniques to enable remote wakeup of controlled devices. In particular, a controlling device and a controlled device may each power on a radio during a wakeup window. The controlling device may communicate a wakeup frame to the controlled device during the wakeup window to wake the controlled device from a sleep or low power state for purposes of communicating with the controlled device in a network, such as a peer-to-peer network.
Abstract:
Embodiments of a millimeter-wave communication station and method for multiple-access beamforming in a millimeter-wave network are generally described herein. In some embodiments, an initiating station performs multiple-access beamforming with one or more responding stations by announcing a number of sector-sweep (SS) slots of a beamforming training (BFT) period and a number of SS frames of each SS slot. One or more SS frames are received from one or more of the responding stations within one of the SS slots of the BFT period. The initiating station transmits one or more SS feedback frames to the responding stations within the one SS slot to indicate an antenna configuration to the responding stations for communication with the initiating station. The responding stations transmit a limited number of SS frames per SS slot based on the number of SS frames announced by the initiating station and transmit any additional SS frames in a next SS slot of the beamforming training period. Each SS frame contains an indication to the initiating station of an antenna configuration for communication with the responding station.