Systems, methods, and devices for interference mitigation in wireless networks

    公开(公告)号:US10382144B2

    公开(公告)日:2019-08-13

    申请号:US15485789

    申请日:2017-04-12

    Abstract: Example systems, methods, and devices for mitigating interference in wireless networks are discussed. One example method includes the operations of passing channel frequency offsets of a plurality of LTF symbols on a plurality of subcarriers through a high pass frequency band, encoding the plurality of LTF symbols with a plurality of LTF sequences across frequency, and encoding the LTF symbols in time and/or frequency. Another example includes the operations of receiving a plurality of LTF symbols on a plurality of subcarriers for channel estimation of one or more streams, removing the encoding across time, removing the encoding across frequency, and removing the LTF sequence(s), and passing the modified LTF symbols through a smoothing filter, for example, a low pass filter for removing the interference due to CFOs. Methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.

    Higher order MU-MIMO for LTE-A
    64.
    发明授权

    公开(公告)号:US10375580B2

    公开(公告)日:2019-08-06

    申请号:US15717687

    申请日:2017-09-27

    Abstract: An access node of a 3GPP LTE-based wireless communication network comprises a transmitter portion that transmits downlink control information (DCI) to at least one wireless station of a plurality of wireless stations wirelessly accessing the node as a Multi-User Multiple Input Multiple Output (MU-MIMO) wireless communication network. The DCI comprises at least one code word indicating a rank of a channel matrix between the transmitter portion of the node and the wireless station greater than 4 and a spatial-related configuration for the wireless station. In one exemplary embodiment, the transmitter portion transmits the DCI from one substantially localized geographical transmission point forming a single-cell access point for the plurality of wireless stations. In another exemplary embodiment, the transmitter portion transmits the DCI from multiple geographically substantially isolated transmission points forming a single-cell access point.

    Method, apparatus and system for using a user equipment as a small evolved NodeB for a small cell

    公开(公告)号:US10244083B2

    公开(公告)日:2019-03-26

    申请号:US15511571

    申请日:2014-10-16

    Abstract: A device, method and system of using a first user equipment (UE) as a small evolved NodeB (eNB) for a small cell may comprise receiving a first long term evolution (LTE) packet from a second UE over the small cell; converting the first LTE packet into a first transmission control protocol/Internet protocol (TCP/IP) packet, wherein the converting includes retrieving payload data from the first LTE packet and encapsulating the payload data into the first TCP/IP packet by adding a TCP/IP header to the payload data, and wherein the TCP/IP header includes an IP address of an Evolved Packet Core (EPC) network associated to Internet based on a TCP/IP tunneling protocol; and transmitting the first TCP/IP packet to an Internet destination via the EPC connected with the first UE through an Internet server over a local area network (LAN).

    SYSTEMS AND METHODS FOR FACILITATING SIMULTANEOUS POLL RESPONSES

    公开(公告)号:US20190045539A1

    公开(公告)日:2019-02-07

    申请号:US16034028

    申请日:2018-07-12

    Abstract: The present disclosure relates to computer-implemented systems and methods for facilitating simultaneous poll responses. A method may include assigning respective subsets of subcarrier frequencies to a plurality of user devices for communication over a wireless channel. The method may also include transmitting, simultaneously, a channel status request poll to the user devices. Additionally, the method may include determining, based at least in part on a first channel status response received via a first subset of subcarrier frequencies over the wireless channel, that the first channel status response is received from the first user device. Similarly, the method may also include determining a second channel status response is received from a second user device. Furthermore, the method may include determining, based at least in part on the first channel status response and the second channel status response, to schedule simultaneous data communication for the first device and the second device.

Patent Agency Ranking