Abstract:
A semiconductor device includes first and second field effect transistors (FETs) formed in a semiconductor substrate having a first main surface. The first FET includes first source and drain contact grooves, each running in a first direction parallel to the first main surface, each formed in the first main surface. First source regions are electrically connected to a conductive material in the first source contact groove. First drain regions are electrically connected to a conductive material in the first drain contact groove. The second FET includes second source and drain contact grooves, each running in a second direction parallel to the first main surface, each formed in the first main surface. Second source regions are electrically connected to a conductive material in the second source contact groove, and second drain regions are electrically connected to a conductive material in the second drain contact groove.
Abstract:
An embodiment of a semiconductor device comprises a first load terminal contact area at a first side of a semiconductor body. A second load terminal contact area is at a second side of the semiconductor body opposite to the first side. A control terminal contact area is at the second side of the semiconductor body. An isolation structure extends through the semiconductor body between the first and second sides. The isolation structure electrically isolates a first part of the semiconductor body from a second part of the semiconductor body. A first thickness of the first part of the semiconductor body is smaller than a second thickness of the second part of the semiconductor body.
Abstract:
A semiconductor device comprises a transistor in a semiconductor body having a first main surface and a second main surface, the first main surface being opposite to the second main surface. The transistor comprises a source region at the first main surface, a drain region, a body region, a drift zone, and a gate electrode at the body region. The body region and the drift zone are disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. The gate electrode is disposed in trenches extending in the first direction. The transistor further comprises an insulating layer adjacent to the second main surface of the body region. The source region vertically extends to the second main surface.
Abstract:
A transistor cell includes a drift region, a source region, a body region, and a drain region that is laterally spaced apart from the source region. A gate electrode is adjacent the body region. A field electrode is arranged in the drift region. A source electrode is connected to the source region and the body region, and a drain electrode is connected to the drain region. An avalanche bypass structure is coupled between the source electrode and the drain electrode and includes a first semiconductor layer of the first doping type, a second semiconductor layer of the first doping type, and a pn-junction arranged between the first semiconductor layer and the source electrode. The second semiconductor layer has a higher doping concentration than the first semiconductor layer and is arranged between the second semiconductor layer and the drift region. The drain electrode is electrically connected to the second semiconductor layer.
Abstract:
A semiconductor device includes a transistor in a semiconductor substrate having a main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, a gate electrode, and a gate dielectric adjacent to the gate electrode. The gate electrode is disposed adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the main surface between the source region and the drain region. The gate dielectric has a thickness that varies at different positions of the gate electrode.
Abstract:
An embodiment of a semiconductor device comprises a first load terminal contact area at a first side of a semiconductor body. A second load terminal contact area is at a second side of the semiconductor body opposite to the first side. A control terminal contact area is at the second side of the semiconductor body. An isolation structure extends through the semiconductor body between the first and second sides. The isolation structure electrically isolates a first part of the semiconductor body from a second part of the semiconductor body. A first thickness of the first part of the semiconductor body is smaller than a second thickness of the second part of the semiconductor body.
Abstract:
A method includes forming a trench extending from a first surface of a semiconductor body into the semiconductor body such that a first trench section and at least one second trench section adjoin the first trench section, wherein the first trench section is wider than the second trench section. A first electrode is formed, in the at least one second trench section, and dielectrically insulated from semiconductor regions of the semiconductor body by a first dielectric layer. An inter-electrode dielectric layer is formed, in the at least one second trench section, on the first electrode. A second electrode is formed, in the at least one second trench section on the inter-electrode dielectric layer, and in the first trench section, such that the second electrode at least in the first trench section is dielectrically insulated from the semiconductor body by a second dielectric layer.
Abstract:
A semiconductor device in a semiconductor substrate includes a trench in a first main surface of the semiconductor substrate. The trench includes a first trench portion extending in a first direction and a second trench portion extending in the first direction. The first trench portion is connected with the second trench portion in a lateral direction. The first trench portion and the second trench portion are arranged one after the other along the first direction. The semiconductor device further includes a trench conductive structure having a conductive material disposed in the first trench portion, and a trench capacitor structure having a capacitor dielectric and a first capacitor electrode disposed in the second trench portion. The first capacitor electrode includes a layer lining a sidewall of the second trench portion.
Abstract:
A semiconductor device includes a transistor in a semiconductor substrate having a first main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, and a gate electrode adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the first main surface, between the source region and the drain region. The semiconductor device further includes a conductive layer beneath the gate electrode and insulated from the gate electrode.
Abstract:
A semiconductor device includes a transistor in a semiconductor substrate having a first main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, and a gate electrode adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the first main surface, between the source region and the drain region. The semiconductor device further includes a conductive layer beneath the gate electrode and insulated from the gate electrode.