摘要:
A transistor cell includes a drift region, a source region, a body region, and a drain region that is laterally spaced apart from the source region. A gate electrode is adjacent the body region. A field electrode is arranged in the drift region. A source electrode is connected to the source region and the body region, and a drain electrode is connected to the drain region. An avalanche bypass structure is coupled between the source electrode and the drain electrode and includes a first semiconductor layer of the first doping type, a second semiconductor layer of the first doping type, and a pn-junction arranged between the first semiconductor layer and the source electrode. The second semiconductor layer has a higher doping concentration than the first semiconductor layer and is arranged between the second semiconductor layer and the drift region. The drain electrode is electrically connected to the second semiconductor layer.
摘要:
A power element and a temperature sensing element are formed on the same semiconductor substrate, and one end of a PN junction of the temperature sensing element is connected to a ground potential (VSS) or a power supply potential (VDD) through an intermediation of a resistor. A sum of a potential difference between both ends of the PN junction and a potential difference between both ends of the resistor is used as a temperature detection signal. The temperature sensing element can thus be formed in a recess formed in the power element while avoiding latch-up.
摘要:
A semiconductor device includes a switching element having: a drift layer; a base region; an element-side first impurity region in the base region; an element-side gate electrode sandwiched between the first impurity region and the drift layer; a second impurity region contacting the drift layer; an element-side first electrode coupled with the element-side first impurity region and the base region; and an element-side second electrode coupled with the second impurity region, and a FWD having: a first conductive layer; a second conductive layer; a diode-side first electrode coupled to the second conductive layer; a diode-side second electrode coupled to the first conductive layer; a diode-side first impurity region in the second conductive layer; and a diode-side gate electrode in the second conductive layer sandwiched between first impurity region and the first conductive layer and having a first gate electrode as an excess carrier injection suppression gate.
摘要:
A lateral DMOS device includes a body diode region and a protective diode region. The body diode region has a second conduction type well region formed in a first conduction type semiconductor substrate, the second conduction type well region including a first conduction type body region and a drain region each formed in the second conduction type well region, a first conduction type impurity region and a source region formed in the first conduction type body region, and a gate insulating film and a gate electrode formed on the first conduction type semiconductor substrate. The first conduction type body region and the second conduction type well region compose a body diode. In the protective diode region, the first conduction type impurity region is formed at a prescribed interval and the first conduction type body region and the second conduction type well region compose a protective diode.
摘要:
A lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor including a breakdown voltage clamp includes a drain n+ region, a source n+ region, a gate, and a p-type reduced surface field (PRSF) layer including one or more bridge portions. Each of the one or more bridge portions extends below the drain n+ region in a thickness direction. Another LDMOS transistor includes a drain n+ region, a source n+ region, a gate, an n-type reduced surface field (NRSF) layer disposed between the source n+ region and the drain n+ region in a lateral direction, a PRSF layer disposed below the NRSF layer in a thickness direction orthogonal to the lateral direction, and a p-type buried layer (PBL) disposed below the PRSF layer in the thickness direction. The drain n+ region is disposed over the PBL in the thickness direction.
摘要:
An ESD protection semiconductor device includes a substrate, a gate set formed on the substrate, a source region and a drain region formed in the substrate respectively at two sides of the gate set, and at least a doped region formed in the source region. The source region and the drain region include a first conductivity type, and the doped region includes a second conductivity type complementary to the first conductivity type. The doped region is electrically connected to a ground potential.
摘要:
A transistor cell includes a drift region, a source region, a body region, and a drain region that is laterally spaced apart from the source region. A gate electrode is adjacent the body region. A field electrode is arranged in the drift region. A source electrode is connected to the source region and the body region, and a drain electrode is connected to the drain region. An avalanche bypass structure is coupled between the source electrode and the drain electrode and includes a first semiconductor layer of the first doping type, a second semiconductor layer of the first doping type, and a pn-junction arranged between the first semiconductor layer and the source electrode. The second semiconductor layer has a higher doping concentration than the first semiconductor layer and is arranged between the second semiconductor layer and the drift region. The drain electrode is electrically connected to the second semiconductor layer.
摘要:
An ESD protection semiconductor device includes a substrate, a gate set formed on the substrate, a source region and a drain region formed in the substrate respectively at two sides of the gate set, and at least a first doped region formed in the drain region. The source region and the drain region include a first conductivity type, and the first doped region includes a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other. The first doped region is electrically connected to a ground potential.
摘要:
Adverse effects can be hardly exerted on a current performance of an LDMOSFET to suppress the amount of carrier implantation from an anode layer of an LDMOS parasitic diode, and improve a reverse recovery withstand of the parasitic diode. The LDMOSFET includes a semiconductor substrate having a first semiconductor region formed of a feeding region of a first conductivity type at a position where a field oxide film is not present on a surface layer of a semiconductor region in which the field oxide film is selectively formed, and a second semiconductor region formed of a well region of a second conductivity type which is an opposite conductivity type, and feeding regions of the first conductivity type and the second conductivity type formed on an upper layer of the well region, and a gate electrode that faces the well region through a gate oxide film. The feeding region of the first semiconductor region is formed at a distance from the field oxide film near an end portion remote from the gate electrode, and desirably the feeding region is intermittently formed at intervals in the longitudinal direction.
摘要:
A rectifier includes a first transistor of a drain/source common field effect type and a second transistor of a drain/source common field effect type in which the second transistor is diode-connected to the first transistor so as to allow the first transistor to perform a diode operation, and configures a rectifier stage with the first transistor.