Abstract:
An exhaust gas filter for cleaning an exhaust gas of an internal combustion engine, includes at least one strip-shaped filter layer. The filter layer has at least one filter region formed of a material through which a fluid can at least partly flow, for filtering out particulates from the exhaust gas. The filter layer also has at least one contact region with a catalytically active coating, for conversion of gaseous components of the exhaust gas. A method for cleaning an exhaust gas of an internal combustion engine is also provided.
Abstract:
Within the framework of the purification of exhaust gases of mobile internal combustion engines, filter materials are subjected to particularly high thermal and dynamic conditions. As a result, it is advantageous to use filter materials together in a stable and durable composite. To this end, a heat-resistant filter layer made of a material through which a fluid can at least partially flow and which has at least one filter section and at least one edge area, is provided. A layer thickness that differs from that of the at least one filter section is provided in the at least one edge area.
Abstract:
A method for gluing and brazing a honeycomb structure includes at least one partially structured foil with a pitch and a wave height. The method includes the steps of choosing a mean brazing material diameter of a powder brazing material, said diameter being 15% smaller than the height of the wave; determining a minimum thickness of the glue strip according to equation; gluing at least partially structured foil within the width of the glue strip on at least part of the wave crests formed by the undulation; brazing the honeycomb structure. The invention also relates to a corresponding honeycomb structure that ensures satisfactory joint connections even when said structure is used in the exhaust systems of automobiles.
Abstract:
A method for producing a metallic honeycomb body includes providing a plurality of smooth sheet-metal foils and at least partly structured sheet-metal foils and placing the foils in a housing. The smooth sheet-metal foils have a first length while the structured sheet-metal foils have a second length. A difference between the first length and the second length is selected in accordance with a prestress.
Abstract:
A process for producing a structure in a smooth sheet-metal strip includes multiple process steps. In a first step, a first section of a smooth sheet-metal strip is fed to a first tool and a second section of the sheet-metal strip is fed to a second tool in a direction of advance. Then the sheet-metal strip is stopped. A sheet-metal machining of the first section of the sheet-metal strip is carried out using the first tool. A sheet-metal machining of the second section of the sheet-metal strip is carried out using the second tool, with the first feeding step being carried out simultaneously. An apparatus is provided for producing a sheet-metal strip of such a complex structure, which produces the structure with a very high degree of accuracy even when the materials properties differ.
Abstract:
A process for producing a metallic layer includes forming structures at least in subregions of the metallic layer. The structures have corrugation troughs and corrugation peaks, an upper bearing surface formed at least in part from the peaks, and a lower bearing surface formed at least in part from the troughs. The metallic layer is formed with at least a first region having a first thickness and a second region having a second thickness, different than the first thickness. The structures are formed, in longitudinal direction, independently of the thickness, with at least one of the upper and lower bearing surfaces in the regions being substantially aligned in longitudinal direction in vicinity of at least one of the peaks and the troughs. A metallic layer with regions of varying material thickness and a honeycomb body produced at least partly from such metallic layers, are also provided.
Abstract:
An exhaust gas filter for cleaning an exhaust gas of an internal combustion engine includes at least one strip-shaped filter layer made of a material through which a fluid can at least partly flow. The filter layer has a length in a longitudinal direction and a width in a transverse direction. The filter layer has a metallic reinforcing region at least in a partial region. The metallic reinforcing region has a width and a length. The width of the reinforcing region is less than the width of the filter layer and/or the length of the reinforcing region is less than the length of the filter layer. A method for producing a filter layer for an exhaust gas filter is also provided.
Abstract:
A process for producing a metallic layer includes forming structures at least in subregions of the metallic layer. The structures have corrugation troughs and corrugation peaks, an upper bearing surface formed at least in part from the peaks, and a lower bearing surface formed at least in part from the troughs. The metallic layer is formed with at least a first region having a first thickness and a second region having a second thickness, different than the first thickness. The structures are formed, in longitudinal direction, independently of the thickness, with at least one of the upper and lower bearing surfaces in the regions being substantially aligned in longitudinal direction in vicinity of at least one of the peaks and the troughs. A metallic layer with regions of varying material thickness and a honeycomb body produced at least partly from such metallic layers, are also provided.
Abstract:
A delivery device for delivering a reducing agent from a reducing agent tank to an exhaust gas treatment device of an internal combustion engine, includes a partially rigid reducing agent line and a delivery pump disposed in the reducing agent line and having a delivery direction from the reducing agent tank to the exhaust gas treatment device. The delivery device has at least one vibration compensating device selected from the following group: an inflow compensating device upstream of the delivery pump in the delivery direction, an outflow compensating device downstream of the delivery pump in the delivery direction, a pump-internal compensating device within the delivery pump, and a structure borne noise compensating device on a fixing of the delivery pump. A motor vehicle having the delivery device is also provided.
Abstract:
A method for operating a delivery device for delivering a reducing agent from a reducing agent tank into an exhaust treatment device of an internal combustion engine of a motor vehicle, includes at least intermittently carrying out a ventilation process of the delivery device during operation of the internal combustion engine. A registration of a ventilation process first occurs. A timing unit having a preset time interval and/or a mass-flow summing unit having a preset total mass flow is then actuated. When the preset time interval and/or the preset total mass flow is reached, the ventilation process is then carried out. In particular, monitoring the delivery device by a pressure sensor can thus be omitted. A delivery device for delivering a reducing agent is also provided.