Abstract:
A method and apparatus for connecting a wireless network in a digital device are provided. The method of connecting the wireless network of the digital device includes receiving a signal from a peer digital device, comparing Receive Signal Strength (RSS) of the received signal with a specified threshold to determine whether the peer digital device is located nearby, if it is determined that the peer digital device is located nearby, establishing a Wireless Local Area Network (WLAN) connection to the peer digital device, and automatically executing an application program that uses the WLAN connection.
Abstract:
Inkjet printheads and methods of manufacturing the inkjet printhead are disclosed. The inkjet printhead may include a glue layer disposed between the substrate and a chamber layer. The glue layer may contain a crosslink inhibitor that inhibits cross linkage of a photosensitive resin during an exposing process.
Abstract:
A flash memory device including a high voltage generator circuit that is adapted to supply a program voltage having a target voltage to a selected word line is provided. The flash memory device is adapted to terminate the program interval in accordance with when the program voltage has been restored to the target voltage after dropping below the target voltage. A method for operating the flash memory device is also provided.
Abstract:
Disclosed is a system for providing an electronic device with a DM service, including: a DM server for providing the electronic device with the DM service; and a wireless terminal capable of being directly connected to the DM server for establishing a DM session while cooperating with the electronic device, generating an MO used for managing the electronic device with reference to a DDF of the electronic device if the wireless terminal receives the DDF of the electronic device from the electronic device through the DM session, and transmitting the generated MO to the DM server.
Abstract:
An inkjet printhead includes: a substrate in which an ink feed hole is formed; a chamber layer which is formed on the substrate by performing a photolithography process and which includes a first photosensitive resin; and a nozzle layer which is formed on the chamber layer by performing a photolithography process and which includes a second photosensitive resin. The first photosensitive resin and the second photosensitive resin are materials which are developed by different developing solutions, respectively. Additional layers and components may be incorporated into the inkjet printhead and may be formed on an upper surface of the substrate. The additional layers and components may include an insulating layer, one or more heaters, one or more electrodes, a passivation layer, a glue layer, and an anti-cavitation layer.
Abstract:
A flash memory device includes a memory cell array having a first region and a second region that include memory cells arranged in a plurality of rows and columns; an address storage circuit adapted to store address information for defining the second region; a row decoder circuit adapted to select one of the first and second regions in response to an external address; a voltage generating circuit adapted to generate a read voltage to be provided to a row of the selected region by the row decoder circuit during a read operation; a detecting circuit adapted to detect whether the selected region is included in the second region on the basis of address information and external address information that are stored in the address storage circuit; and a control logic adapted to control the voltage generating circuit in response to an output of the detecting circuit during the read operation. The control logic controls the voltage generating circuit so that a read voltage provided to the row of the second region is lower than a read voltage provided to a row of the first region.
Abstract:
A semiconductor device may include a semiconductor substrate, first and second source/drain regions on a surface of the semiconductor substrate, and a channel region on the surface of the semiconductor substrate with the channel region between the first and second source/drain regions. An insulating layer pattern may be on the channel region, a first conductive layer pattern may be on the insulating layer, and a second conductive layer pattern may be on the first conductive layer pattern. The insulating layer pattern may be between the first conductive layer pattern and the channel region, and the first conductive layer pattern may include boron doped polysilicon with a surface portion having an accumulation of silicon boronide. The first conductive layer pattern may be between the second conductive layer pattern and the insulating layer pattern, and the second conductive layer pattern may include tungsten. Related methods are also discussed.
Abstract:
The present invention relates to a method of manufacturing a thin film transistor array panel and apparatus and more particularly to an apparatus containing an in-situ fluorine generation chamber.
Abstract:
A semiconductor device is provided. The semiconductor device includes a gate spacer that defines a trench on a substrate and includes an upper part and a lower part, a gate insulating film that extends along sidewalls and a bottom surface of the trench and is not in contact with the upper part of the gate spacer, a lower conductive film that extends on the gate insulating film along the sidewalls and the bottom surface of the trench and is not overlapped with the upper part of the gate spacer, and an upper conductive film on an uppermost part of the gate insulating film on the lower conductive film.