摘要:
A magnetic memory device includes a first wiring layer which runs in the first direction, a memory element which is arranged above the first wiring layer, second wiring layers which are arranged on the memory element and run in a second direction different from the first direction, and a first magnetic shield layer which is formed on the side surface of each second wiring layer and formed around the side surface of the memory element.
摘要:
A magnetic memory device includes magneto resistive elements which are laminated in each cell with easy axes of magnetization set in different directions, each magneto resistive elements having at least two resistance values, and first and second wirings which sandwich the magneto resistive elements and are arranged to extend in different directions from each other.
摘要:
A magnetic memory device includes a first interconnection which runs in a first direction, a second interconnection which runs in a second direction different from the first direction, a magnetoresistive element which is arranged at the intersection of and between the first and second interconnections, and a metal layer which is connected to the magnetoresistive element and has a side surface that partially coincides with a side surface of the magnetoresistive element.
摘要:
A magnetic memory device includes magneto resistive elements which are laminated in each cell with easy axes of magnetization set in different directions, each magneto resistive elements having at least two resistance values, and first and second wirings which sandwich the magneto resistive elements and are arranged to extend in different directions from each other.
摘要:
Provided is a semiconductor device and a method of manufacturing the semiconductor device having a stacked type capacitor excellent in storage capacity, breakdown voltage and reliability. A storage node electrode (Ru) of the stacked-type capacitor is formed on a contact hole of the underlying insulating film by the steps of forming the side wall of the contact hole diagonally at a taper angle within the range of 90 to 110.degree., forming a storage node electrode on the inner wall surface of the contact hole, filling SOG in the contact hole, etching off the Ru film on the insulating film using SOG as a mask, and etching off the Ru film formed on the upper peripheral region of the inner wall in the depth direction of the contact hole. Thereafter, the dielectric film of the stacked-type capacitor formed of a (Ba, Sr) TiO.sub.3 thin film is formed on the Ru storage node electrode. In this manner, it is possible to obtain a stack-type capacitor having a drastically-improved step coverage and a high breakdown voltage. In addition, it is easy to reduce the distance between adjacent Ru storage node electrodes within a resolution limit of lithography, compared to the conventional method.