Abstract:
An electric power tool comprises a main body supporting a tool and an electric motor housed in the main body for driving the tool. A plurality of first battery interfaces is configured to removably receive or attach a plurality of first battery packs and to electrically connect the plurality of attached first battery packs in series with the electric motor. A plurality of indicators is configured to communicate information concerning the respective conditions of the plurality of attached first battery packs. The plurality of indicators is arranged such that all of the indicators are simultaneously viewable by a user of the electric power tool.
Abstract:
A charger (40; 240; 340) charges a battery pack (20) that is detachably attachable to a cordless power tool (12). The charger has at least a first side wall (44b) that at least partially defines a battery pack receiving hole (44; 244) shaped to receive and accommodate the battery pack. A charging output element (62; 362) supplies charging power to the battery pack. The battery pack receiving hole has a lateral cross sectional area that decreases downwardly in the vertical direction of the battery pack receiving hole such that gravity causes the battery pack to be guided to a prescribed position within the battery pack receiving hole. In addition, the charging output element is positioned so as to be proximal to a corresponding charging power input element of the battery pack when the battery pack is disposed in the prescribed position.
Abstract:
A battery unit in one aspect of an embodiment of the present disclosure includes a plurality of cell assemblies, a positive electrode connection terminal, a negative electrode connection terminal, a plurality of switch sections, a control section, and a simultaneous on-suppression section. When an on-command signal is output from the control section to at least two of the plurality of the switch sections, the simultaneous on-suppression section performs one of enabling the on-command signal to one of the at least two switch sections and disabling the on-command signal to all of the at least two switch sections, so as to suppress the at least two switch sections from being turned on at the same time.
Abstract:
A motor-driven appliance system in one aspect of an embodiment of the present disclosure includes a motor-driven appliance having a motor, at least one control circuit, and a communication device. The control circuit is configured to execute a process related to control of the motor-driven appliance. The communication device is configured to communicate with an external device. The control circuit is further configured to switch, when at least one predetermined sleep condition is satisfied, from an active mode in which the control circuit performs a normal operation to a sleep mode in which the control circuit stops part of the normal operation to thereby suppress power consumption; and to switch to the active mode when the communication device receives an external wakeup signal transmitted from the external device while the control circuit is in the sleep mode.
Abstract:
An electric powered work machine includes an inverter circuit, a power-source-side switching element, a power-source-side resistor, at least one circuit-side resistor, and a fault determiner. The power-source-side switching element is arranged between a direct-current power source and the inverter circuit. The power-source-side resistor is connected in parallel to the power-source-side switching element. The circuit-side resistor is connected to the inverter circuit in such a state that electrical conduction is possible between a positive side and a negative side of the direct-current power source in the inverter circuit in a case where semiconductor switching elements in the inverter circuit are all OFF. The fault determiner determines whether the switching elements are short-circuited based on a voltage at a connection point between the power-source-side switching element and the inverter circuit.
Abstract:
An electric work machine includes a motor, a manipulator, a first switch, a second switch, and a control circuit. The manipulator is on-operated or off-operated by a user of the electric work machine. Each of the first switch and the second switch is turned on or off in response to the manipulator being on-operated or off-operated. The control circuit executes a motor control process in accordance with a computer program. The control circuit receives first switch information from the first switch, and receives second switch information from the second switch. The motor control process outputs a drive command for driving the motor in response to the first switch information and the second switch information indicating that the manipulator is on-operated.
Abstract:
A cart may include: a driving wheel; a motor configured to rotate the driving wheel; a motor drive circuit configured to drive the motor; a motor brake circuit configured to electrically brake the motor; a rotation speed sensor configured to detect a rotation speed of the motor; and a control device configured to control the motor via the motor drive circuit and the motor brake circuit based on a target rotation speed of the motor and the rotation speed detected by the rotation speed sensor. The motor brake circuit may include an electronically variable resistance element configured to operate in a linear mode and a switching mode in response to a control input signal. The motor brake circuit may be configured to operate the electronically variable resistance element in the linear mode when braking the motor.
Abstract:
A dust collector in one aspect of the present invention comprises a dust collection portion, a communication portion, and an interlock operation control portion. When the communication portion receives an interlock command transmitted from an electric working machine, the interlock operation control portion makes the dust collection portion operate interlocking with the electric working machine. The interlock operation control portion includes a storage portion, in which identification information specific to the electric working machine with which the dust collection portion is to be made to perform the interlock operation is stored.
Abstract:
A dust collector in one aspect of the present invention comprises a dust collection portion, a communication portion, and an interlock operation control portion. When the communication portion receives an interlock command transmitted from an electric working machine, the interlock operation control portion makes the dust collection portion operate interlocking with the electric working machine. The interlock operation control portion includes a storage portion, in which identification information specific to the electric working machine with which the dust collection portion is to be made to perform the interlock operation is stored.
Abstract:
A power tool system includes a hand-held power tool having a power tool housing accommodating a motor, and a battery pack interface electrically connected to the motor within the power tool housing. A battery pack includes a battery pack housing accommodating at least one battery cell and a power tool interface electrically connected to the at least one battery cell within the battery pack housing. The power tool interface is configured to be physically and electrically connected to and disconnected from the battery pack interface of the power tool. A wireless communicator is attached to or accommodated within the battery pack housing. The wireless communicator is configured to wirelessly communicate with an external device using radio waves while the power tool interface of the battery pack is physically and electrically connected to the battery pack interface of the hand-held power tool.