摘要:
The invention relates to a projection system, comprising a radiation source, an illumination system operable to illuminate a structured mask, and a projection objective for projecting an image of the mask structure onto a light-sensitive substrate, wherein said projection system comprises an optical system comprising an optical axis or a preferred direction given by the direction of a light beam propagating through the optical system; the optical system comprising a temperature compensated polarization-modulating optical element described by coordinates of a coordinate system, wherein one preferred coordinate of the coordinate system is parallel to the optical axis or parallel to said preferred direction; said temperature compensated polarization-modulating optical element comprising a first and a second polarization-modulating optical element, the first and/or the second polarization-modulating optical element comprising solid and/or liquid optically active material and a profile of effective optical thickness, wherein the effective optical thickness varies at least as a function of one coordinate different from the preferred coordinate of the coordinate system, in addition or alternative the first and/or the second polarization-modulating optical element comprises solid and/or liquid optically active material, wherein the effective optical thickness is constant as a function of at least one coordinate different from the preferred coordinate of the coordinate system; wherein the first polarization-modulating optical element comprises optically active material with a specific rotation of opposite sign compared to the optically active material of the second polarization-modulating optical element.
摘要:
An illumination system (12) of a microlithographic exposure system comprises a plurality of light emitting elements (24) that have light exit facets that are positioned in or in close proximity to a field plane (OP) or a pupil plane and are configured to be individually activated. Light collecting elements, for example microlenses of a fly-eye lens or arrays of cylinder lenses, may be used to collect the light bundles emitted by the light emitting elements (24). Homogenizing means, for example a rod integrator or an optical raster element (40), may be provided for improving the intensity uniformity in a reticle plane (RP).
摘要:
An illumination system for a microlithographic projection exposure apparatus comprises a masking device and a masking objective which projects the masking device onto an image plane. The illumination system further includes an optical correction element having a surface that is either aspherically shaped or supports diffractive structures that have at least substantially the effect of an aspherical surface. This surface is arranged at least approximately in a field plane which precedes the image plane of the masking objective The aspherically acting surface is designed such that a principal ray distribution generated by the illumination system in the image plane matches a principal ray distribution required by a projection objective.
摘要:
An illumination system for a microlithographic projection exposure apparatus includes a light source (12) for generating a projection light beam, a first objective (20) and a masking system (38, 52) for masking a reticle (30). The masking system (38, 52) includes adjustable first blades (40) for masking in a first spatial direction (X) and adjustable second blades (54, 56) for masking in a second spatial direction (Y). The first blades (40) are arranged in the region of a first field plane (36) and the second blades (54, 56) are arranged in the region of a second field plane (44) which is different to the first field plane (36). The masking system can therefore be made spatially less concentrated, whereby constructional difficulties in the region of the field plane before the masking objective resulting from space requirement problems are reduced. A further contribution is made to solving the space requirement problem if an attenuation system for achieving the most uniform possible light intensity in the wafer plane (122) includes a transmission filter (162) which has locally varying transmissivity and can be moved synchronously with traversing movements of the reticle (30).
摘要:
An illumination system for a microlithography projection exposure apparatus is designed for illuminating an illumination field with an illumination radiation with a predeterminable degree of coherence σ, it being possible to adjust the degree of coherence within a degree of coherence range extending into the range of very small degrees of coherence of significantly less than σ=0.2. The illumination system may have a first optical system for generating a predeterminable light distribution in an entrance plane of a light mixing device, and also a light mixing device for homogenizing the impinging radiation. The first optical system and the light mixing device can in each case be changed over between a plurality of configurations corresponding to different degree of coherence ranges. The degree of coherence ranges overlap and are dimensioned such that the resulting total degree of coherence range is larger than the individual degree of coherence ranges.
摘要:
An illumination system for microlithography serves to illuminate an illumination field with illumination light of a primary light source. A first raster arrangement has bundle-forming first raster elements which are arranged in a first plane of the illumination system or adjacent to the plane. The first raster arrangement serves to generate a raster arrangement of secondary light sources. A transmission optics serves for superimposed transmission of the illumination light of the secondary light sources into the illumination field. The transmission optics has a second raster arrangement with bundle-forming second raster elements. In each case one of the raster elements of the first raster arrangement is allocated to one of the raster elements of the second raster arrangement for guiding a partial bundle of an entire bundle of illumination light. The first raster arrangement for example has at least two types (I, II, III) of the first raster elements which have different bundle-influencing effects. The raster elements of the two raster arrangements are arranged relative to one another in such a way that to each raster element type (I to III) is allocated at least one individual distance (ΔI, ΔII, ΔIII) between the first raster element of this type (I to III) and the allocated second raster element of the second raster arrangement. As a result, an illumination system is obtained which allows particular illumination parameters to be influenced in such a way that undesirable influences on other illumination parameters are avoided to the greatest extent possible.
摘要:
A microlithographic projection exposure apparatus includes an optical surface, which may be formed by a plurality of micro-mirrors, and a measurement device which is configured to measure a parameter related to the optical surface at a plurality of locations. The measurement device includes an illumination unit with a plurality of illumination members, each having a light exit facet. An optical imaging system establishes an imaging relationship between an object plane in which at least two light exit facets are arranged, and an image plane which at least substantially coincides with the optical surface. A detector unit measures the property of measuring light after it has interacted with the optical surface, and an evaluation unit determines the surface related parameter for each of the locations on the basis of the properties determined by the detector unit.
摘要:
An illumination system for a microlithographic projection exposure step-and-scan apparatus has a light source, a first optical raster element and a second optical raster element. The first optical raster element extends in a first pupil plane of the illumination system and is designed such that the geometrical optical flux of the system is increased perpendicular to a scan direction of the projection exposure apparatus. The second optical raster element extends in a second pupil plane of the illumination system, which is not necessarily different from the first pupil plane, and is designed such that the geometrical optical flux of the system is increased in the scan direction and perpendicular thereto. This makes it possible to improve the irradiance uniformity in a reticle plane.
摘要:
A polarization-modulating optical element consisting of an optically active crystal material has a thickness profile where the thickness, as measured in the direction of the optical axis, varies over the area of the optical element. The polarization-modulating optical element has the effect that the plane of oscillation of a first linearly polarized light ray and the plane of oscillation of a second linearly polarized light ray are rotated, respectively, by a first angle of rotation and a second angle of rotation, with the first angle of rotation and the second angle of rotation being different from each other.
摘要:
An optical arrangement includes a polarization-modulating optical element and a compensation plate is disclosed. The polarization-modulating optical element includes a first optically active material having a first specific rotation with a sign, the polarization-modulating optical element having a first optical axis. The polarization-modulating element has a first thickness profile that, as measured in the direction of the first optical axis, that is variable. The compensation plate includes a second optically active material having a second specific rotation with a sign opposite the sign of the first specific rotation. The compensation plate has a second thickness profile configured so that, when radiation passes through the optical arrangement, the compensation plate substantially compensates for angle deviations of the radiation that are caused by the polarization-modulating optical element.