Abstract:
A method for regulating or controlling the transmission ratio of an automatic power-branched transmission. Power is transmitted through a shaft driven by an engine, a variable speed drive, a gear transmission, a driven shaft, and at least two control clutches. The variable speed drive and the gear transmission are connected to each other in such a way that the regulating range of the variable speed drive is traversed in one direction within a first range of transmission ratios, and is traversed in the opposite direction within a second range of transmission ratios during traversing of the entire range of transmission ratios. The shifting strategies result in reduced wear of the endless belt device and allow for comfortable changing between the transmission ratio ranges.
Abstract:
A target engine rotational speed depending at least upon the position of an accelerator pedal position and a motor vehicle speed is determined in a method for controlling the operation of a motor vehicle drive train having a drive motor and a branched power transmission with several steplessly adjustable transmission ratio regions, between which shifting takes place at a predetermined range shift transmission ratio. A transmission ratio corresponding to the target engine rotational speed and vehicle speed is determined and set, whereby the change with respect to time of the accelerator pedal position and/or the change with respect to time of the target engine rotational speed is used for determining the target engine rotational speed and is filtered when a difference between the actual transmission ratio and a transmission ratio shift range falls below a limit value.
Abstract:
The extent of engagement of an automatically adjustable friction clutch in the power train of a motor vehicle, wherein the clutch receives torque from a rotary output element of an engine and transmits torque to the rotary input element of a transmission, is determined by an electronic control unit in conjunction with an actuator which is responsive to signals from the control unit. Under normal circumstances, the adjustment of the clutch is selected on the basis of control signals which depend upon the actual RPM of the output element and the RPM of the input element. When the actual RPM of the output element departs from a desired RPM, the control signal is altered to reduce the rate of torque transmission by the clutch upon a determination that the actual RPM is below the desired RPM, and to increase the rate of torque transmission by the clutch when the actual RPM exceeds the desired RPM.
Abstract:
In a continuously variable chain-belt transmission, a ratio-controlling pressure is selectively applied to either one or the other of two pairs of conical disks, while a belt-tightening contact pressure is applied equally in a torque-dependent amount to both disk pairs. A pump pressure generated by a pump is regulated by an offset pressure valve to a pressure level that exceeds the ratio-controlling pressure by a preset amount and at least equals the contact pressure. A current-controlled ratio-controlling valve device directs the ratio-controlling pressure to one or the other of the disk pairs depending on whether the ratio-controlling current is above or below a neutral value. The neutral current value as well as the algorithm describing the functional relationship between the ratio-controlling pressure and the current are continuously updated while the transmission is in use.
Abstract:
A transmission for use in the power train of a motor vehicle has a rotary first component (such as a shaft), a second component which may but need not be rotatable, a fluid-conveying conduit having a first end portion extending into a first socket provided in the first component and a second end portion extending into a socket of the second component, a split-ring piston packing located in an external groove of the first end portion, and an O-ring received in an external groove of the second end portion. The O-ring prevents the conduit and the second component from rotating relative to each other. A passage which is defined by the two components and the conduit can receive a stream of pressurized hydraulic fluid from a pump by way of pipes wherein the flow of fluid is controlled by several valves including a manually operated slide valve, at least one preferably adjustable pressure regulating valve, at least one preferably adjustable safety valve, and adjuster for the adjustable valve or valves; such adjuster can employ one or more signal-responsive control valves.
Abstract:
A method of monitoring a torque transmission system with a manually switchable gearbox in the power train of a motor vehicle involves the utilization of at least one sensor unit at the input side of the torque transmission system to ascertain relevant positions of the shift lever of the gearbox and the driving torque of the engine of the motor vehicle. The thus obtained shift lever signals are memorized, together with comparison signals which are obtained as a result of filtering of the shift lever signals, and various characteristics of such signals are recognized and identified to indicate the intention of the operator of the vehicle regarding the switching of the gearbox. The thus obtained switching intention signals are transmitted to a controlled clutch operating system.