摘要:
The present invention relates to a semiconductor device that contains a trench metal-insulator-metal (MIM) capacitor and a field effect transistor (FET), and a design structure including the semiconductor device embodied in a machine readable medium. The trench MIM capacitor comprises a first metallic electrode layer located over interior walls of a trench in a substrate, a dielectric layer located in the trench over the first metallic electrode layer, and a second metallic electrode layer located in the trench over the dielectric layer. The FET comprises a source region, a drain region, a channel region between the source and drain regions, and a gate electrode over the channel region. The trench MIM capacitor is connected to the FET by a metallic strap. The semiconductor device of the present invention can be fabricated by a process in which the trench MIM capacitor is formed after the FET source/drain region but before the FET source/drain metal silicide contacts, for minimizing metal contamination in the FET.
摘要:
A network for a cellular communication system comprises access points (105-109) supporting cells within a region (113). Each access point (105-109) has an individual proxy address of a proxy address space which is a local address space of an address proxy (101) and a common network address of a network address space which is a network wide address space. A gateway access point (103) covers an entry point to the region (113) and detects a remote station entering the region. It then determines an access point (105) in the region to which the remote station is handed over and transmits a binding message to the address proxy (101) with an indication of the access point (105). In response to receiving the binding message, the address proxy (101) establishes a binding between the common network address and the proxy address of the access point (105). Data for the remote station is then forwarded to the access point (105) using the binding.
摘要:
A network for a cellular communication system comprises access points (105-109) supporting cells within a region (113). Each access point (105-109) has an individual proxy address of a proxy address space which is a local address space of an address proxy (101) and a common network address of a network address space which is a network wide address space. A gateway access point (103) covers an entry point to the region (113) and detects a remote station entering the region. It then determines an access point (105) in the region to which the remote station is handed over and transmits a binding message to the address proxy (101) with an indication of the access point (105). In response to receiving the binding message, the address proxy (101) establishes a binding between the common network address and the proxy address of the access point (105). Data for the remote station is then forwarded to the access point (105) using the binding.
摘要:
A programmable phase change material (PCM) structure includes a heater element formed at a transistor gate level of a semiconductor device, the heater element further including a pair of electrodes connected by a thin wire structure with respect to the electrodes, the heater element configured to receive programming current passed therethrough, a layer of phase change material disposed on top of a portion of the thin wire structure, and sensing circuitry configured to sense the resistance of the phase change material.
摘要:
The present invention provides electrically-programmable fuse structures having radiation inhibitive properties for preventing non-destructive security breaches by radiation imaging techniques such as X-ray imaging, without adversely effecting fuse programmability, and methods of designing the same.
摘要:
The present invention relates to a semiconductor device that contains a trench metal-insulator-metal (MIM) capacitor and a field effect transistor (FET). The trench MIM capacitor comprises a first metallic electrode layer located over interior walls of a trench in a substrate, a dielectric layer located in the trench over the first metallic electrode layer, and a second metallic electrode layer located in the trench over the dielectric layer. The FET comprises a source region, a drain region, a channel region between the source and drain regions, and a gate electrode over the channel region. The trench MIM capacitor is connected to the FET by a metallic strap. The semiconductor device of the present invention can be fabricated by a process in which the trench MIM capacitor is formed after the FET source/drain region but before the FET source/drain metal silicide contacts, for minimizing metal contamination in the FET.
摘要:
A method for enhancing the on-current carrying capability of a MOSFET device is disclosed. In an explanary embodiment, the method includes recessing fill material formed within a shallow trench isolation (STI) adjacent the MOSFET so as to expose a desired depth of a sidewall of the STI, thereby increasing the effective size of a parasitic corner device of the MOSFET. The threshold voltage of the parasitic corner device is then adjusted so as to substantially equivalent to the threshold voltage of the MOSFET device.
摘要:
A structure is fabricated comprising a substrate, a dielectric layer formed over the substrate, and a single crystal layer of a compound formed over the dielectric layer. The single crystal layer is formed by the chemical reaction of at least a first element with an initial single crystal layer of a second element on the dielectric layer having an initial thickness of about 100 to about 10,000 angstroms.According to another aspect, a carbide single crystal layer is provided on a substrate by depositing carbon from a solid carbon source at a low rate and low temperature, followed by reacting the carbon with the underlying layer to convert it to the carbide.
摘要:
A single-etch stop process for the manufacture of silicon-on-insulator substrates. The process includes forming a silicon-on-insulator bonded substrate comprising a handle wafer, a device wafer, a device layer having a thickness of between about 0.5 and 50 micrometers, and an oxide layer with the device layer being between the device wafer and the oxide layer and the oxide layer being between the device layer and the handle wafer, the device wafer having a boron concentration of at least about 1.times.10.sup.18 boron atoms/cm.sup.3 and a resistivity of about 0.01 to about 0.02 ohm-cm. A portion of the device wafer is mechanically removed from the silicon-on-insulator bonded substrate wherein the device wafer has a total thickness variation across the surface of the wafer of less than about 2 micrometers and a defect-free surface after the mechanical removal step. The defect-free surface of the device wafer is thereafter etched away to expose the device layer, and the exposed device layer is polished to produce a silicon-on-insulator substrate having a device layer the total thickness variation of which does not exceed 10% of the maximum thickness of the device layer.
摘要:
An epitaxial conductor and a method for forming buried conductor patterns is described incorporating a layer of single crystalline silicon, a pattern formed therein such as a trench, a layer of metal silicide epitaxial formed on the bottom surface of the pattern or trench, a layer of silicon epitaxially formed thereover, and a layer of metal silicide epitaxially formed over the silicon layer. The invention overcomes the problem of twinning defects in the top surface of epitaxial silicide layers.