摘要:
In a CPP-type magnetic sensing element, a free magnetic layer includes at least two magnetic sublayers and an intermediate sublayer placed between the two adjacent magnetic sublayers, and thus the free magnetic layer is in a synthetic ferrimagnetic state. Since the physical thickness of the free magnetic layer can be increased and the resultant magnetic moment can be decreased, the bulk scattering effect is satisfactorily displayed and the magnetization of the free magnetic layer varies satisfactorily in response to en external magnetic field, resulting in an increase in the read output.
摘要:
A tunnel-type magnetic detecting device is provided. The tunnel-type magnetic detecting device is capable of stably reducing the surface roughness of an insulating barrier layer, and capable of properly improving an MR effect typified by a resistance changing rate. A seed layer is formed in a laminated structure of an NiFeCr layer and an Al layer. This makes it possible to stably reduce the surface roughness of the insulating barrier layer as compared with a related art in which a seed layer is formed in a single-layer structure of an NiFeCr layer. Accordingly, according to the tunnel-type magnetic detecting device of the invention, the MR property typified by an excellent resistance changing rate (ΔR/R) can be obtained stably.
摘要翻译:提供隧道式磁检测装置。 隧道式磁检测装置能够稳定地降低绝缘阻挡层的表面粗糙度,能够适当地提高以电阻变化率为代表的MR效应。 种子层以NiFeCr层和Al层的层叠结构形成。 与使NiFeCr层的单层结构形成种子层的现有技术相比,能够稳定地降低绝缘阻挡层的表面粗糙度。 因此,根据本发明的隧道式磁检测装置,可以稳定地获得以优异的电阻变化率(&Dgr; R / R)为代表的MR特性。
摘要:
A CPP giant magnetoresistive head includes lower and upper shield layers, and a giant magnetoresistive element disposed between the upper and lower shield layers and including a pinned magnetic layer, a free magnetic layer and a nonmagnetic layer disposed between the pinned magnetic layer and the free magnetic layer. In the CPP giant magnetoresistive head, the pinned magnetic layer extends to the rear of the nonmagnetic layer and the free magnetic layer in the height direction, and the dimension of the pinned magnetic layer in the height direction is larger than that in the track width direction. Also, the pinned magnetic layer comprises a magnetic material having a positive magnetostriction constant or a magnetic material having high coercive force, and the end of the pinned magnetic layer is exposed at a surface facing a recording medium.
摘要:
A magnetic detecting element, which can suppress change in output asymmetry even if the magnetization direction of a pinned magnetic layer is changed 180°, is provided. The magnetic-film-thickness of a second free magnetic layer is increased so as to be greater than that of a first free magnetic layer and offset the torque applied to the second free magnetic layer with that applied to the first free magnetic layer when the sensing current magnetic field occurs. Thus, change in the magnetization direction of the free magnetic layer before and after a sensing current is applied in the magnetic detecting element can be suppressed. The orthogonal state between the free magnetic layer and the pinned magnetic layer is maintained even when a sensing current in the same direction as that before the occurrence is applied in the magnetic detecting element wherein pin inversion occurred, and the output asymmetry is maintained suitably.
摘要:
A magnetic sensor uses a magnetoresistance element which can be driven in a stable manner with a dipole irrespective of a polarity of an external magnetic field. A resistance value R of first magnetoresistance elements varies, and a resistance value of second magnetoresistance elements does not vary with a variation in magnetic field magnitude of the external magnetic field H1 in the positive direction. A resistance value R of second magnetoresistance elements varies and a resistance value of first magnetoresistance elements does not vary with a variation in magnetic field magnitude of the external magnetic field H2 in the negative direction. Accordingly, the magnetic sensor can be driven in a stable manner with a dipole irrespective of the polarity of the external magnetic field.
摘要:
A CPP giant magnetoresistive head includes lower and upper shield layers with a predetermined distance therebetween, and a giant magnetoresistive element (GMR) including pinned and free magnetic layers disposed between the upper and lower shield layers with a nonmagnetic layer interposed between the pinned and free magnetic layers. A current flows perpendicularly to the film plane of the GMR. The magnetoresistive head further includes an antiferromagnetic layer (an insulating AF of Ni—O or α-Fe2O3) provided in the rear of the GMR in a height direction to make contact with the upper or lower surface of a rear portion of the pinned magnetic layer which extends in the height direction, and an exchange coupling magnetic field is produced at the interface with the upper or lower surface, so that the magnetization direction of the pinned magnetic layer is pinned by the exchange coupling magnetic field in the height direction.
摘要:
In a magnetic detecting element, second ferromagnetic layers are deposited on respective second antiferromagnetic layers. The magnetization direction of the second ferromagnetic layers is antiparallel to that of first ferromagnetic layers. A static magnetic field generated by a surface magnetic charge at the internal side surfaces of the first ferromagnetic layers is absorbed by the second ferromagnetic layers. Thus, it becomes hard that the static magnetic field from the first ferromagnetic layers enters the central portion of a free magnetic layer. Consequently, the central portion of the free magnetic layer can maintain its single magnetic domain state, and, thus, the hysteresis can be reduced and the Barkhausen noise is suppressed.
摘要:
A magnetic sensing device is presented that has a multilayer material with a pinned magnetic layer, a nonmagnetic material layer, and a free magnetic layer. The pinned magnetic layer is a composite with a nonmagnetic intermediate layer and magnetic thin-film layers separated from each other by the nonmagnetic intermediate layer. A first nonmagnetic magnetostriction-enhancing layer is on the pinned magnetic layer and contacts a first thin-film layer placed farthest from the nonmagnetic material layer. At least one of the magnetic thin-film layers has a composite structure with a second nonmagnetic magnetostriction-enhancing layer and magnetic layers separated from each other by the second magnetostriction-enhancing layer. All of the magnetic layers are magnetized in the same direction antiparallel to the adjacent magnetic thin-film layer. At least some crystals of the first and second magnetostriction-enhancing layers and the first thin-film layer/magnetic layers are epitaxial or heteroepitaxial.
摘要:
Disclosed are a CPP magnetic sensing element employing the exchange bias method in which a sensing current is prevented from expanding in the track width direction in the multilayer film while the magnetization of the free magnetic layer is controlled properly, side reading is effectively prevented, and read output is improved, and a method for fabricating the same. First insulating layers are disposed at both sides in the track width direction of a multilayer film, a second free magnetic layer is disposed over the multilayer film and the first insulating layers, and second antiferromagnetic layers are disposed on both side regions of the second free magnetic layer.
摘要:
A method for manufacturing magnetic sensing elements for use in magnetic sensors and hard disks. A ferromagnetic layer and a second antiferromagnetic layer are deposited on a nonmagnetic layer having a uniform thickness. The second antiferromagnetic layer is milled to form an indent. The resulting magnetic sensing element has a free magnetic layer reliably set in a single-magnetic-domain state in the track width direction.