Abstract:
A memory device or module selects between alternative command ports. Memory systems with memory modules incorporating such memory devices support point-to-point connectivity and efficient interconnect usage for different numbers of modules. The memory devices and modules can be of programmable data widths. Devices on the same module can be configured select different command ports to facilitate memory threading. Modules can likewise be configured to select different command ports for the same purpose.
Abstract:
A memory space of a module connected to a memory controller via a memory interface may be used as a command buffer. Commands received by the module via the command buffer are executed by the module. The memory controller may write to the command buffer out-of-order. The memory controller may delay or eliminate writes to the command buffer. Tags associated with commands are used to specify the order commands are executed. A status buffer in the memory space of the module is used to communicate whether commands have been received or executed. Information received via the status buffer can be used as a basis for a determination to re-send commands to the command buffer.
Abstract:
A single-ended receiver is coupled to an input-output (I/O) pin of a command and address (CA) bus. The receiver is configurable with dual-mode I/O support to operate the CA bus in a low-swing mode and a high-swing mode. The receiver is configurable to receive a first command on the I/O pin while in the high-swing mode, initiate calibration of the slave device to operate in the low-swing mode in response to the first command, switch the slave device to operate in the low-swing mode while the CA bus remains active, and to receive a second command on the I/O pin while in the low-swing mode.
Abstract:
A memory device or module selects between alternative command ports. Memory systems with memory modules incorporating such memory devices support point-to-point connectivity and efficient interconnect usage for different numbers of modules. The memory devices and modules can be of programmable data widths. Devices on the same module can be configured select different command ports to facilitate memory threading. Modules can likewise be configured to select different command ports for the same purpose.
Abstract:
A method of operation of a flash integrated circuit (IC) memory device is described. The flash IC memory device has an array of memory cells and an interface to receive control, address and data signals using an internal reference voltage. The method includes, at boot-up, initializing the internal reference voltage to a default voltage. At boot-up, the interface is operable to receive, using the internal reference voltage, signals having a first voltage swing at a first signaling frequency. The method includes receiving a first command that specifies calibration of the interface during a calibration mode. The calibration mode is used to calibrate the interface to operate at a second signaling frequency and receive signals having a second voltage swing. The second voltage swing is smaller than the first voltage swing and the second signaling frequency is higher than the first signaling frequency.
Abstract:
A memory system employs an addressing scheme to logically divide rows of memory cells into separate contiguous regions, one for data storage and another for error detection and correction (EDC) codes corresponding to that data. Data and corresponding EDC codes are stored in the same row of the same bank. Accessing data and corresponding EDC code in the same row of the same bank advantageously saves power and avoids bank conflicts. The addressing scheme partitions the memory without requiring the requesting processor to have an understanding of the memory partition.
Abstract:
Memory controllers, devices, modules, systems and associated methods are disclosed. In one embodiment, an integrated circuit (IC) memory device is disclosed. The memory device includes an array of storage cells and command interface circuitry to receive an internal transfer command. In response to the internal transfer command, transfer logic reads data from a first portion of the array of storage cells, transfers the data as on-chip transfer data, and writes the on-chip transfer data to a second portion of the array of storage cells. In response to the command interface circuitry receiving an interrupt command, the transfer logic pauses the internal transfer operation, and carries out an unrelated memory access operation involving at least the first portion of the array of storage cells or the second portion of the array of storage cells.
Abstract:
A method of operation of a flash integrated circuit (IC) memory device is described. The flash IC memory device has an array of memory cells and an interface to receive control, address and data signals using an internal reference voltage. The method includes, at boot-up, initializing the internal reference voltage to a default voltage. At boot-up, the interface is operable to receive, using the internal reference voltage, signals having a first voltage swing at a first signaling frequency. The method includes receiving a first command that specifies calibration of the interface during a calibration mode. The calibration mode is used to calibrate the interface to operate at a second signaling frequency and receive signals having a second voltage swing. The second voltage swing is smaller than the first voltage swing and the second signaling frequency is higher than the first signaling frequency.
Abstract:
Memory controllers, devices, modules, systems and associated methods are disclosed. In one embodiment, an integrated circuit (IC) memory device is disclosed. The memory device includes an array of storage cells and command interface circuitry to receive an internal transfer command. In response to the internal transfer command, transfer logic reads data from a first portion of the array of storage cells, transfers the data as on-chip transfer data, and writes the on-chip transfer data to a second portion of the array of storage cells. In response to the command interface circuitry receiving an interrupt command, the transfer logic pauses the internal transfer operation, and carries out an unrelated memory access operation involving at least the first portion of the array of storage cells or the second portion of the array of storage cells.
Abstract:
An integrated circuit includes a physical layer interface having a control timing domain and a data timing domain, and circuits that enable the control timing domain during a change in power conservation mode in response to a first event, and that enable the data timing domain in response to a second event. The control timing domain can include interface circuits coupled to a command and address path, and the data timing domain can include interface circuits coupled to a data path.