Abstract:
In integrated structure sensing resistor for a power MOS device consists of a doped region extending from a deep body region of at least one cell of a first plurality of cells, constituting a main power device, to a deep body region of a corresponding cell of a second smaller plurality of cells constituting a current sensing device. The first plurality of cells and the second plurality of cells are formed using trench technology.
Abstract:
An integrated circuit containing both power and small-signal NPN bipolar devices. The small-signal devices use lateral current flow, and are completely surrounded (laterally and vertically) by an N-type well region. The N-type well region itself is completely surrounded (laterally and vertically) by a P-type isolation region. This double isolation provides improved protection against turn-on of parasitic devices, which can cause leakage problems in the conventional device structures. Optionally a self-aligned process step is used to provide a graded base doping profile in the small-signal devices.
Abstract:
An integrated circuit including a power stage, a low-voltage component separated from the power stage by an isolating region and a reference potential region at a reference potential. The power stage includes an N-type substrate region which may be biased to a terminal voltage with respect to the reference potential and the isolating region has P-type conductivity. The low-voltage component includes an N-type input region receiving an input voltage. The input voltage and the terminal voltage may oscillate a few tens of volts above or below the reference potential and turn on parasitic transistors. To prevent turning on of the parasitic transistors, switchable conductive paths are interposed between the isolating region on the one hand, and the substrate region, the input region and the reference potential region on the other, for electrically connecting the isolating region to one of the substrate region, input region and reference potential region which presents instant by instant the lowest potential.
Abstract:
The base region of the power stage and the horizontal isolation region of the integrated control circuit or collector region of a transistor of an integrated circuit consist of portions of an epitaxial layer with a first conductivity type grown in sequence on an underlying epitaxial layer with a second conductivity type opposite the first.
Abstract:
A bipolar control transistor, forming part of an integrated current-limiter device comprises inside an epitaxial layer superimposed over a semiconductor substrate of a first type of conductivity, a base region of a second type of conductivity accessible from a base contact and regions of collector and emitter of the first type of conductivity contained in the base region and accessible from respective collector and emitter contacts. The base region comprises at least one highly-doped deep-body region which contains almost completely said emitter region, a lightly-doped body region which contains the collector region and an intermediate-doped region which co-operates with the first deep-body region to completely contain the emitter region and a surface area of the base region that is included between the regions of collector and emitter. There is also at least one first portion of a layer of polysilicon superimposed and self-aligned with the surface area between the regions of collector and emitter and electrically connected to the collector contact of the bipolar transistor.
Abstract:
A PIC structure includes a lightly doped semiconductor layer of the first conductivity type superimposed over a heavily doped semiconductor substrate of a second conductivity type, wherein a Vertical IGBT and a driving and control circuit including at least first conductivity type-channel MOSFETs are integrated. The MOSFETs are provided inside well regions of the second conductivity type which are included in at least one lightly doped region of the first conductivity type completely surrounded and isolated from the lightly doped layer of the first conductivity type by means of a respective isolated region of a second conductivity type.
Abstract:
A manufacturing process for an integrated circuit which includes at least one vertical-current-flow MOS transistor. The patterned photoresist which screens the body implant is also used to mask the etching of a nitride layer over a pad oxide. After the photoresist is cleared, the nitride pattern is transferred into the oxide, and the resulting oxide/nitride stack is used to mask the source implant. The nitride/oxide stack is then removed, the gate oxide is grown, and the gate layer is then deposited.
Abstract:
The process provides first for the accomplishment of low-doping body regions at the sides and under a gate region and then the accomplishment of high-doping body regions inside said low-doping body regions and self-aligned with said gate region. There is thus obtained an MOS power transistor with vertical current flow which has high-doping body regions self-aligned with said gate region and with a reduced junction depth.
Abstract:
A smart power integrated circuit, in which the power stage includes a vertical-current-flow NMOS power transistor having many paralleled cells. A deeper P-type diffusion surrounds the P-type body region of the cells at the edge of the power stage. The junction between this deep P-type diffusion and the laterally adjacent N-type material has a lower curvature than the junction which would be formed by the P-type body region alone. This increases the transistor's breakdown voltage without degrading the transistor's on-state resistance R.sub.on.
Abstract:
The invention relates to a process for forming a buried drain or collector region in monolithic semiconductor devices comprising an integrated control circuit and one or more power transistors with vertical current flow integrated in the same chip. The process allows optimization of the current-carrying capacity and the series drain resistance of the power stage and operating voltage by the implantation of a buried gate region in a first epitaxial layer after the formation of said epitaxial layer. These buried gate regions high dopant concentrations where the dopants have low diffusion coefficients. These low diffusive dopants permit more accurate and form defined buried gate regions than current formation techniques utilizing formation of buried gate regions implemented in the substrate where these gate regions contain highly diffusive dopants.