摘要:
A continuous in situ process of deposition, etching, and deposition is provided for forming a film on a substrate using a plasma process. The etch-back may be performed without separate plasma activation of the etchant gas. The sequence of deposition, etching, and deposition permits features with high aspect ratios to be filled, while the continuity of the process results in improved uniformity.
摘要:
A toroidal plasma source (28) within a substrate processing chamber (10). The toroidal plasma source forms a poloidal plasma with theta symmetry. The poloidal plasma current is essentially parallel to a surface of the plasma generating structure, thus reducing sputtering erosion of the inner walls. The plasma current is similarly essentially parallel to a process surface (32) of a substrate (34) within the chamber. In a further embodiment, a shaped member (66) between the substrate and the plasma source controls the plasma density in a selected fashion to enhance plasma processing uniformity.
摘要:
A compliant bond structure 20 comprising wire mesh 25 strands 50 surrounded by compliant metal 40 is useful for bonding a ceramic surface 30 to a metal surface 35. The wire mesh 25 comprises interlocking strands 50 having longitudinal axes that are oriented substantially parallel to the ceramic and metal surfaces 30, 35. More preferably, the wire mesh 25 comprises strands having a coefficient of thermal expansion that is about 0.4 to about 1.6 times the average of the coefficients of thermal expansion of the metal and ceramic surfaces 30, 35.
摘要:
A failure resistant electrostatic chuck 20 for holding a substrate 35 during processing of the substrate 35 comprises one or more electrodes 25 covered by an insulator 30, the electrodes 25 capable of electrostatically holding a substrate 35 when a voltage is applied thereto. An electrical power bus 40 comprises one or more output terminals 45 that conduct voltage to the electrodes 25. The fuses 50 are positioned in hollow cavities 55 in the insulator 30, and electrically connect the electrodes 25 in series to the output terminals 45 of the power bus 40. Each fuse 50 can electrically disconnect an electrode 25 from an output terminal 45 when the insulator 30 covering the electrode 25 punctures and exposes the electrode 25 to a plasma process environment thereby causing a plasma current discharge to flow through the fuse 50.
摘要:
An electrostatic chuck (20) for holding a substrate (45) is described. One version of the chuck (20) suitable for mounting on a base (25), comprises (i) an electrostatic member (33) having an electrode (50) therein, and (ii) an electrical lead (60) extending through the base (25) to electrically engage the electrode (50) of the electrostatic member (33). When the chuck (20) is used to hold a substrate (45) in a process chamber (80) containing erosive process gas, the substrate (45) covers and substantially protects the electrical lead (60) from erosion by the erosive process gas. In a preferred version of the chuck (20), an electrical connector (55) forming an integral extension of the electrode (50), electrically connects the electrode (50) to a voltage supply terminal (70) used to operate the chuck (20). The electrical connector (55) comprises (i) an electrical lead (60) that extends through the base (25), and (ii) an electrical contact (65) on the electrical lead (60), the contact sized sufficiently large to directly contact and electrically engage the voltage supply terminal (70). The electrode (50) of the chuck (20) can comprise first and second electrodes (130), (135) electrically isolated from one another by an electrical isolation void (52), the electrodes sized and configured so that the electrical isolation void (52) can serve as a cooling groove (105) for holding coolant for cooling the substrate (45) held on the chuck (20). Preferably, the two electrode chuck (20) is used in conjunction with a switching system capable of operating the chuck (20) in either a monopolar mode or in a bipolar mode.
摘要:
An electrostatic chuck 20 for holding a substrate 12 comprises a dielectric 70 having a receiving surface 75 for receiving the substrate thereon. The dielectric 70 comprises a charging electrode 80 for generating electrostatic charge for electrostatically holding the substrate 12 to the receiving surface 75, and a discharge electrode 85 electrically isolated from the charging electrode for removing electrostatic charge accumulated in the chuck 20.
摘要:
An electrostatic chuck (20) for holding a substrate (45) is described. One version of the chuck (20) suitable for mounting on a base (25), comprises (i) an electrostatic member (33) having an electrode (50) therein, and (ii) an electrical lead (60) extending through the base (25) to electrically engage the electrode (50) of the electrostatic member (33). When the chuck (20) is used to hold a substrate (45) in a process chamber (80) containing erosive process gas, the substrate (45) covers and substantially protects the electrical lead (60) from erosion by the erosive process gas. In a preferred version of the chuck (20), an electrical connector (55) forming an integral extension of the electrode (50), electrically connects the electrode (50) to a voltage supply terminal (70) used to operate the chuck (20). The electrical connector (55) comprises (i) an electrical lead (60) that extends through the base (25), and (ii) an electrical contact (65) on the electrical lead (60), the contact sized sufficiently large to directly contact and electrically engage the voltage supply terminal (70). The electrode (50) of the chuck (20) can comprise first and second electrodes (130), (135) electrically isolated from one another by an electrical isolation void (52), the electrodes sized and configured so that the electrical isolation void (52) can serve as a cooling groove (105) for holding coolant for cooling the substrate (45) held on the chuck (20). Preferably, the two electrode chuck (20) is used in conjunction with a switching system capable of operating the chuck (20) in either a monopolar mode or in a bipolar mode. Erosion resistance of the chuck (20) is further enhanced by a masking gas assembly (115) which directs a masking gas at an exposed portion of the insulator (35), to protect the exposed portion of the insulator (35) from the erosive gas contained in the process chamber (80).
摘要:
A method of making a dielectric chuck for securing a semiconductor wafer on a pedestal having multiple apertures for the introduction of cooling gas beneath the wafer. The wafer is held by electrostatic force against a laminate of an electrode layer sandwiched between two dielectric layers in accordance with the method, such that the laminate presents a planar surface to the wafer for a substantial distance beyond the outer edge of the electrode layer. The laminate construction method ensures that a large wafer area beyond the outer edge of the electrode is in contact with the laminate, to minimize cooling gas leakage near the edge, and provides a longer useful life by increasing the path length of dielectric material between the electrode layer and potentially damaging plasma material surrounding the chuck.
摘要:
A corrosion resistant electrostatic chuck 10 for holding a silicon wafer 18 during processing with a corrosive gas has an electrically insulative layer 12 thereon protected from corrosion by a guard 14. The insulative layer 12 has a top surface 20 covered by the silicon wafer 18 and an exposed side surface 16. The guard 14 substantially encloses the exposed side surface 16 of the insulative layer 12 and protects the insulative layer 12 from a corrosive gas. The guard 14 is made of sacrificial material that corrodes at least as fast as the insulative layer 12 corrodes when exposed to the corrosive gas. The sacrificial material positioned near the exposed side surface 16 corrodes and reduces the concentration of the corrosive gas at the exposed side surface 16, thereby reducing the rate of corrosion of the insulative layer 12.
摘要:
The present invention is directed to a system for removing material from a structure. The system includes an excimer laser for removing material by ablative photodecomposition and means for increasing the energy density of the laser beam. The system further includes an aperture structure having a plurality of openings of different sizes and shapes. At least one of these openings may be selectively positioned in the laser beam. Additionally, the system includes a stage for supporting the structure wherein the stage is moveable in at least the x and y directions.