Abstract:
A continuous in situ process of deposition, etching, and deposition is provided for forming a film on a substrate using a plasma process. The etch-back may be performed without separate plasma activation of the etchant gas. The sequence of deposition, etching, and deposition permits features with high aspect ratios to be filled, while the continuity of the process results in improved uniformity.
Abstract:
A method of depositing an insulating film over a substrate having a gap formed between two adjacent raised features. The method includes depositing one portion of the insulating film over the substrate and in the gap using a high density plasma process that has simultaneous deposition and sputtering components and depositing another portion of the insulating film over the substrate and in the gap using an atomic layer deposition process. In some embodiments the portion of the film deposited by an atomic layer deposition process is deposited over the portion of the film deposited using a high density plasma CVD technique. In other embodiments, the portion of the film deposited by a high density plasma CVD process is deposited over the portion of the film deposited using an atomic layer deposition process.
Abstract:
A method of depositing a high density plasma silicon oxide layer having improved gapfill capabilities. In one embodiment the method includes flowing a process gas consisting of a silicon-containing source, an oxygen-containing source and helium into a substrate processing chamber and forming a plasma from the process gas. The ratio of the flow rate of the helium with respect to the combined flow rate of the silicon source and oxygen source is between 0.5:1 and 3.0:1 inclusive. In one particular embodiment, the process gas consists of monosilane (SiH4), molecular oxygen (O2) and helium.
Abstract translation:一种沉积具有改进的间隙填充能力的高密度等离子体氧化硅层的方法。 在一个实施例中,该方法包括将由含硅源,含氧源和氦组成的工艺气体流入衬底处理室并从工艺气体形成等离子体。 氦流量相对于硅源和氧源的组合流量的比率在0.5:1和3.0:1之间。 在一个具体实施方案中,工艺气体由单硅烷(SiH 4 S 4),分子氧(O 2 O 2)和氦组成。
Abstract:
A method of depositing a high density plasma silicon oxide layer having improved gapfill capabilities. In one embodiment the method includes flowing a process gas consisting of a silicon-containing source, an oxygen-containing source and helium into a substrate processing chamber and forming a plasma from the process gas. The ratio of the flow rate of the helium with respect to the combined flow rate of the silicon source and oxygen source is between 0.5:1 and 3.0:1 inclusive. In one particular embodiment, the process gas consists of monosilane (SiH4), molecular oxygen (O2) and helium.
Abstract:
A method and apparatus for cleaning a semiconductor wafer processing system comprising a turbomolecular pump. In one embodiment, the invention may be reduced to practice by first supplying a cleaning agent to a chamber; pumping the cleaning agent from the chamber through an the exhaust port; at least partially opening a gate valve; and drawing at least a portion of the cleaning agent through the gate valve and into the turbomolecular pump.
Abstract:
A processing chamber cleaning method is described which utilizes microwave energy to remotely generate a reactive species to be used alone or in combination with an inert gas to remove deposits from a processing chamber. The reactive species can remove deposits from a first processing region at a first pressure and then remove deposits from a second processing region at a second pressure. Also described is a cleaning process utilizing remotely generated reactive species in a single processing region at two different pressures. Additionally, different ratios of reactive gas and inert gas may be utilized to improve the uniformity of the cleaning process, increase the cleaning rate, reduce recombination of reactive species and increase the residence time of reactive species provided to the processing chamber.
Abstract:
The present invention provides an apparatus for depositing a film on a substrate comprising a processing chamber, a substrate support member disposed within the chamber, a first gas inlet, a second gas inlet, a plasma generator and a gas exhaust. The first gas inlet provides a first gas at a first distance from an interior surface of the chamber, and the second gas inlet provides a second gas at a second distance that is closer than the first distance from the interior surface of the chamber. Thus, the second gas creates a higher partial pressure adjacent the interior surface of the chamber to significantly reduce deposition from the first gas onto the interior surface. The present invention also provides a method for depositing a film on a substrate comprising: providing a chemical vapor deposition chamber, introducing first gas through a first gas inlet at a first distance from an interior surface of the chamber, introducing a second gas through a second gas inlet at a second distance from the interior surface of the chamber, wherein the second gas creates a higher partial pressure adjacent the interior surface of the chamber to prevent deposition from the first gas on the interior surface and generating a plasma of the processing gases. Alternatively, the first gas is introduced at a different angle from the second gas with respect to a substrate surface.
Abstract:
Embodiments of the present invention are directed to a gas distribution system which distributes the gas more uniformly into a process chamber. In one embodiment, a gas distribution system comprises a gas ring including an outer surface and an inner surface, and a gas inlet disposed at the outer surface of the gas ring. The gas inlet is fluidicly coupled with a first channel which is disposed between the outer surface and the inner surface of the gas ring. A plurality of gas outlets are distributed over the inner surface of the gas ring, and are fluidicly coupled with a second channel which is disposed between the outer surface and the inner surface of the gas ring. A plurality of orifices are fluidicly coupled between the first channel and the second channel. The plurality of orifices are spaced from the gas inlet by a plurality of distances, and have sizes which vary with the distances from the gas inlet as measured along the first channel, such that the size of the orifice increases with an increase in the distance between the orifice and the gas inlet as measured along the first channel.
Abstract:
A method is disclosed for depositing a dielectric film on a substrate having a plurality of gaps formed between adjacent raised surfaces disposed in a high density plasma substrate processing chamber substrate. In one embodiment the method comprises flowing a process gas comprising a germanium source, a silicon source and an oxidizing agent into the substrate processing chamber; forming a high density plasma that has simultaneous deposition and sputtering components from the process gas to deposit a dielectric film comprising silicon, germanium and oxygen; and during the step of forming a high density plasma, maintaining a pressure within the substrate processing chamber of less than 100 mTorr while allowing the dielectric film to be heated above its glass transition temperature.
Abstract:
The present invention is directed to improving defect performance in semiconductor processing systems. In specific embodiments, an apparatus for processing semiconductor substrates comprises a chamber defining a processing region therein, and a substrate support disposed in the chamber to support a semiconductor substrate. At least one nozzle extends into the chamber to introduce a process gas into the chamber through a nozzle opening. The apparatus comprises at least one heat shield, each of which is disposed around at least a portion of one of the at least one nozzle. The heat shield has an extension which projects distally of the nozzle opening of the nozzle and which includes a heat shield opening for the process gas to flow therethrough from the nozzle opening. The heat shield decreases the temperature of nozzle in the processing chamber for introducing process gases therein to reduce particles.