Abstract:
A packet communication network is connected between a first external network and a second external network. The packet communication network includes a classifier, a parallel network that includes a plurality of physically or logically independent networks, and a multiplexing router. The classifier classifies a packet input from the first external network to one of the networks in the parallel network. Each of the networks in the parallel network transmits the packet to the multiplexing router. The multiplexing router multiplexes a packet received from the networks in the parallel network and outputs the multiplexed packet to the second external network.
Abstract:
A semiconductor device is composed of: an interconnect made of a first conductive film and a second conductive film that are stacked in sequence from the interconnect underside on an insulating film formed on a substrate; and a capacitor composed of a lower capacitor electrode made of the first conductive film, a dielectric film formed on the lower capacitor electrode, and an upper capacitor electrode made of the second conductive film and formed on the dielectric film.
Abstract:
In a group III nitride hetero junction transistor 11a, a second AlY1InY2Ga1-Y1-Y2N layer 15 forms a hetero junction 21 with a first AlX1InX2Ga1-X1-X2N layer 13a. A first electrode 17 forms a Schottky junction with the first AlX1InX2Ga1-X1-X2N layer 13a. The first AlX1InX2Ga1-X1-X2N layer 13a and the second AlY1InY2Ga1-Y1-Y2N layer 15 are provided over a substrate 23. The electrodes 17a, 18a, and 19a include a source electrode, a gate electrode, and a drain electrode, respectively. The carbon concentration NC13 in the first AlX1InX2Ga1-X1-X2N layer 13a is less than 1×1017 cm−3. The dislocation density D in the second AlY1InY2Ga1-Y1-Y2N layer 15 is 1×108 cm−2. The hetero junction 21 generates a two-dimensional electron gas layer 25. These provide a low-loss gallium nitride based electronic device.
Abstract:
A packet communication network is connected between a first external network and a second external network. The packet communication network includes a classifier, a parallel network that includes a plurality of physically or logically independent networks, and a multiplexing router. The classifier classifies a packet input from the first external network to one of the networks in the parallel network. Each of the networks in the parallel network transmits the packet to the multiplexing router. The multiplexing router multiplexes a packet received from the networks in the parallel network and outputs the multiplexed packet to the second external network.
Abstract:
Full-mesh WDM transmission units, each of which includes n number of interfaces and is capable of establishing a bidirectional full-mesh communication between all of the interfaces using wavelength paths based on a wavelength division multiplexing technique, are connected in a multistage tree-shaped structure by internetwork connection units through edge-packet transfer units connected to the respective interfaces. Therefore, it is possible to hold a direct communication between user terminals connected to the edge-packet transfer units of the same full-mesh WDM transmission unit, and to realize scalability by a multistage connection configuration.
Abstract:
A slurry feeding apparatus includes closed slurry bottle, piping, wet nitrogen generator, wet nitrogen supply pipe, suction and spray nozzles, temperature regulator, flow rate control valves, slurry delivery pump and controller for controlling the operation and flow rate of the slurry delivery pump. While a wafer is being polished by a CMP polisher, the controller continuously operates the pump. On the other hand, while the polisher is idling, the controller starts and stops the pump intermittently at regular intervals. No stirrer like a propeller is inserted into the slurry bottle, but the slurry is stirred up by spraying the slurry through the spray nozzle.
Abstract:
A retainer board, holding a semiconductor wafer having a plurality of integrated circuit terminals for testing a semiconductor chip, is provided in confronting relation to a probe sheet having a plurality of probe terminals electrically connected to their corresponding integrated circuit terminals. An insulating substrate, having wiring electrically connected to the plural probe terminals, is provided on the probe sheet in opposed relation to the retainer board. An elastic member is interposed between the probe sheet and the insulating substrate. The retainer board and the probe sheet are brought into so closer relationship that each integrated circuit terminal of the semiconductor wafer held by the retainer board is electrically connected to its corresponding probe terminal of the probe sheet.
Abstract:
An apparatus analyzes the operations of a parallel processing system. The parallel processing system has a serial processing state, a redundant parallel processing state, and a parallel processing state. The apparatus carries out an interrupt process to provide information about the program executing conditions of the parallel processing system. This apparatus efficiently provides information about parallel processing carried out in a multiprocessor system.
Abstract:
A semiconductor integrated circuit apparatus having a plurality of semiconductor integrated circuit devices, each of the plurality of semiconductor devices including a semiconductor integrated circuit formed on a semiconductor substrate, a reference voltage input terminal formed on the semiconductor substrate which is operative for receiving a reference voltage input from outside of the semiconductor substrate, and a burn-in voltage control circuit formed on the semiconductor substrate operative for receiving the reference voltage which is output from the reference voltage input terminal. The burn-in voltage control circuit generates a burn-in supply voltage which is input to the semiconductor integrated circuit, and also maintains the burn-in supply voltage at the reference voltage level such that each of the integrated circuits receives a burn-in supply voltage having the same voltage level.
Abstract:
A contact hole and a wiring groove are formed in an insulating layer formed on a semiconductor substrate. A silver layer is formed inside of the contact hole and the wiring groove and on the insulating layer with the use of an electroless plating bath comprising: silver nitrate containing silver ions; tartaric acid serving as a reducing agent of the silver ions; ethylenediamine serving as a complexing agent of the silver ions; and metallic ions of tetramethylammoniumhydroxide serving as a pH control agent. Then, the silver layer on the insulating layer is removed by a chemical and mechanical polishing method such that an embedded wiring is formed in each of the contact hole and the wiring groove.