Abstract:
In the receiving side MAC layer timestamping approach, the MPDU structure is changed by adding an extra timestamping field. When a MPDU packet is generated, a captured receiving timestamp is written into the MPDU's timestamp field. The MPDU packet is then forwarded from the PHY to the MAC layer of the wireless sensor node. In the MAC layer, the receiving timestamp is further processed and inserted into a corresponding field of the time synchronization message, which is in turn transmitted to a Time Synchronization module. In the sending side MAC layer timestamping approach, the sending timestamp is captured immediately before the time synchronization message is written into TxFIFO.
Abstract:
A method of transmitting data packets in a mobile communication system using at least one relay station (RS) and using at least two frequency carriers is disclosed. More specifically, the method comprises transmitting at least one subpacket of a first data packet to a mobile station (MS) on a first frequency carrier, and transmitting at least one subpacket of a second data packet to the MS via the at least one RS. Here, the at least one subpacket of second data packet from the at least one RS is transmitted on a second frequency carrier, a first subpacket of the first data packet and a first subpacket of the second data packet is transmitted via a main channel of the first frequency carrier and the main channel of the second frequency carrier, respectively, and at least one subsequent subpacket of the first data packet and at least one subsequent subpacket of the second data packet are transmitted via at least one assistant channel of the first frequency carrier and the at least one assistant channel of the second frequency carrier, respectively.
Abstract:
There is presently provided a nucleic acid molecule comprising a glial-specific promoter; a coding sequence for a transgene; and a plurality of miRNA target sites. Each miRNA target site binds an miRNA that is down-regulated in .a glioma cell compared to a normal glial cell, and the glial-specific promoter and the plurality of miRNA target sites are both operably linked to the coding sequence for the transgene.
Abstract:
The present invention is directed to defining forward link (FL) control signaling and bitmap signaling for indicating the channelization codes to be used by access terminals in a mobile communication system. In one aspect of the present invention, a method of allocating resources for a plurality of mobile communication terminals in a wireless communication system is provided. The method includes allocating at least one of the plurality of mobile communication terminals to a first group and at least one of the plurality of mobile communication terminals to a second group according to at least one of a location of and a QoS requirement of each of the plurality mobile communication terminals, generating resource allocation information for each of the first group and second group and transmitting the resource allocation information to each of the plurality of mobile communication terminals.
Abstract:
A method is provided for coupling a plurality of access nodes wirelessly to a plurality of access terminals. The method includes dividing up a carrier frequency into a plurality of subbands; scheduling one or more access terminals to share one of the plurality of subbands; and via one of the plurality of access nodes, first communicating with the one or more access terminals over the one of the plurality of subbands. The communicating includes, within the one of the plurality of subbands, time division multiplexing interlaces corresponding to each of the one or more access terminals.
Abstract:
A method of transmitting more than one signal in a wireless communication system is provided. The method comprises allocating multiple symbols to a first signal constellation and a second signal constellation, wherein the first signal constellation refers to base layer signals and the second signal constellation refers to enhancement layer signals; modulating the multiple symbols of the first signal constellation and the second signal constellation; and transmitting the modulated symbols, wherein configuration information used for modulating the multiple symbols is provided in a control message.
Abstract:
An access node wirelessly coupled to a plurality of access terminals, having a subband scheduler, a plurality of orthogonal frequency division multiplex elements, and a plurality of antennas. The subband scheduler receives precoded data, and schedules transmission of a preamble signal and a plurality of data streams. The plurality of orthogonal frequency division multiplex elements converts the preamble signal and the plurality of data streams into a corresponding preamble tone and a corresponding plurality of data tones. The preamble tone indicates a mapping of the plurality of data tones to one or more of the plurality of access terminals. The plurality of antennas transmits the corresponding preamble tone and the corresponding plurality of data tones in timely fashion for receipt by the plurality of access terminals. The corresponding preamble tone and the corresponding data tones are transmitted over subbands of a code division multiple access (CDMA)-based carrier frequency.
Abstract:
A method of providing a point-to-multipoint service in a mobile communication system and transmission controlling method thereof are disclosed, by which a better quality of a point-to-multipoint service can be provided in a manner of coping with time-variable channel situation variable adaptively. In a mobile communication system providing a point-to-multipoint service, the present invention includes the steps of receiving data for the point-to-multipoint service from a base station, measuring a reception quality for the received point-to-multipoint service data, and transmitting reception quality information for the point-to-multipoint service data to the base station.
Abstract:
A method of determining at least one channel for channel response in a wireless communication system is disclosed. More specifically, the method comprises receiving a plurality of signals from a transmitting end, wherein the signals comprise a plurality of pilot symbols and a plurality of data symbols, determining weight value of each pilot symbol, assigning the determined each weight value to each pilot symbol, and demodulating each data symbol by using respective information of the weight value corresponding to each pilot symbol.
Abstract:
A method of achieving transmit diversity in a wireless communication system is disclosed. The method comprises encoding and modulating data stream based on feedback information, demultiplexing symbols to at least one encoder block, encoding the demultiplexed symbols by the at least one encoder block, transforming the encoded symbols by at least one inverse fast Fourier transform (IFFT) block, and selecting antennas for transmitting the symbols based on the feedback information.