Abstract:
A semiconductor structure includes a first fin structure, a gate structure, a first spacer, and a second space spacer. The gate structure traverses the first fin structure. The first fin structure has an exposed portion exposed out of the gate structure. The first spacer is positioned at and in contact with a side of the exposed portion of the first fin structure. The second space spacer is positioned at and in contact with another side of the exposed portion of the first fin structure. The first spacer has a top surface over than a top surface of the second spacer.
Abstract:
The present disclosure relates to a Fin field effect transistor (FinFET) device having a buried silicon germanium oxide structure configured to enhance performance of the FinFET device. In some embodiments, the FinFET device has a three-dimensional fin of semiconductor material protruding from a substrate at a position located between first and second isolation regions. A gate structure overlies the three-dimensional fin of semiconductor material. The gate structure controls the flow of charge carriers within the three-dimensional fin of semiconductor material. A buried silicon-germanium-oxide (SiGeOx) structure is disposed within the three-dimensional fin of semiconductor material at a position extending between the first and second isolation regions.
Abstract:
A semiconductor device structure includes a fin structure, a semiconductive capping layer, an oxide layer, and a gate structure. The fin structure protrudes above a substrate. The semiconductive capping layer wraps around three sides of a channel region of the fin structure. The oxide layer wraps around three sides of the semiconductive capping layer. A thickness of a top portion of the semiconductive capping layer is less than a thickness of a top portion of the oxide layer. The gate structure wraps around three sides of the oxide layer.
Abstract:
Aspects of the disclosure provide a semiconductor device and a method for forming the semiconductor device. The semiconductor device includes a plurality of nanostructures stacked over a substrate in a vertical direction, a source/drain terminal adjoining the plurality of nanostructures, and a gate structure around the plurality of nanostructures. The gate structure includes a metal cap connecting adjacent two of the plurality of nanostructures and a metal layer partially surrounding the plurality of nanostructures.
Abstract:
Examples of an integrated circuit with FinFET devices and a method for forming the integrated circuit are provided herein. In some examples, an integrated circuit device includes a substrate, a fin extending from the substrate, a gate disposed on a first side of the fin, and a gate spacer disposed alongside the gate. The gate spacer has a first portion extending along the gate that has a first width and a second portion extending above the first gate that has a second width that is greater than the first width. In some such examples, the second portion of the gate spacer includes a gate spacer layer disposed on the gate.
Abstract:
A method for fabricating a semiconductor device includes providing a fin in a first region of a substrate. The fin includes a plurality of a first type of epitaxial layers and a plurality of a second type of epitaxial layers. A portion of a layer of the second type of epitaxial layers in a channel region of the first fin is removed to form a first gap between a first layer of the first type of epitaxial layers and a second layer of the first type of epitaxial layers. A first portion of a first gate structure is formed within the first gap and extending from a first surface of the first layer of the first type of epitaxial layers to a second surface of the second layer of the first type of epitaxial layers. A first source/drain feature is formed abutting the first portion of the first gate structure.
Abstract:
The present disclosure describes a method to reduce power consumption in a fin structure. For example, the method includes forming a first and a second semiconductor fins on a substrate with different heights. The method also includes forming insulating fins between and adjacent to the first and the second semiconductor fins. Further, the method includes forming a first and second epitaxial stacks with different heights on each of the first and second semiconductor fins.
Abstract:
A semiconductor structure includes a substrate, a fin, a bottom capping structure and a top capping structure. The fin disposed on the substrate, the fin has a lower portion and an upper portion extending upwards from the lower portion. The bottom capping structure covers a sidewall of the lower portion of the fin. The top capping structure covers a sidewall of the upper portion of the fin.
Abstract:
A method includes receiving a substrate; forming on the substrate a semiconductor fin; an isolation structure surrounding the semiconductor fin; and first and second dielectric fins above the isolation structure and sandwiching the semiconductor fin; depositing a spacer feature filling spaces between the semiconductor fin and the first and second dielectric fins; performing an etching process to recess the semiconductor fin, resulting in a trench between portions of the spacer feature; and epitaxially growing a semiconductor material in the trench.
Abstract:
FinFET patterning methods are disclosed for achieving fin width uniformity. An exemplary method includes forming a mandrel layer over a substrate. A first cut removes a portion of the mandrel layer, leaving a mandrel feature disposed directly adjacent to a dummy mandrel feature. The substrate is etched using the mandrel feature and the dummy mandrel feature as an etch mask, forming a dummy fin feature and an active fin feature separated by a first spacing along a first direction. A second cut removes a portion of the dummy fin feature and a portion of the active fin feature, forming dummy fins separated by a second spacing and active fins separated by the second spacing. The second spacing is along a second direction substantially perpendicular to the first direction. A third cut removes the dummy fins, forming fin openings, which are filled with a dielectric material to form dielectric fins.