摘要:
A method is provided for producing a radiation-emitting semiconductor chip, in which a first wavelength-converting layer is applied over the radiation exit face of a semiconductor body. The application method is selected from the following group: sedimentation, electrophoresis. In addition, a second wavelength-converting layer is applied over the radiation exit face of the semiconductor body. The second wavelength-converting layer is either produced in a separate method step and then applied or the application method is sedimentation, electrophoresis or printing. Furthermore, a radiation-emitting semiconductor chip and a radiation-emitting component are provided.
摘要:
An optoelectronic component with a semiconductor body that comprises an active semiconductor layer sequence is disclosed, which is suitable for generating electromagnetic radiation of a first wavelength that is emitted from a front face of the semiconductor body. The component also comprises a first wavelength conversion substance following the semiconductor body in its direction of emission, which converts radiation of the first wavelength into radiation of a second wavelength different from the first wavelength, and a first selectively reflecting layer between the active semiconductor layer sequence and the first wavelength conversion substance that selectively reflects radiation of the second wavelength and is transparent to radiation of the first wavelength.
摘要:
An optoelectronic module for emitting monochromatic radiation in the visible wavelength range is specified. The module has a plurality of light emitting diode chips which generate UV radiation. The UV radiation is converted into light in the visible range, for example, into green light, by a wavelength converter. The coupling-out of light from the module is optimized by the use of two selectively reflecting and transmitting filters. This module can be used as a light source in a projection apparatus.
摘要:
A ceramic conversion element includes an active ceramic layer that converts electromagnetic radiation in a first wavelength range into electromagnetic radiation in a second wavelength range, which is different from the first wavelength range, and a carrier layer transmissive to radiation in the first wavelength range and/or radiation in the second wavelength range, wherein an inhibitor layer is arranged between the active layer and the carrier layer, the inhibitor layer reducing diffusion of activator ions from the active layer into the carrier layer.
摘要:
A ceramic conversion element includes an active ceramic layer that converts electromagnetic radiation in a first wavelength range into electromagnetic radiation in a second wavelength range, which is different from the first wavelength range, and a carrier layer transmissive to radiation in the first wavelength range and/or radiation in the second wavelength range, wherein an inhibitor layer is arranged between the active layer and the carrier layer, the inhibitor layer reducing diffusion of activator ions from the active layer into the carrier layer.
摘要:
A semiconductor component having a light-emitting semiconductor layer or a light-emitting semiconductor element, two contact locations and a vertically or horizontally patterned carrier substrate, and a method for producing a semiconductor component are disclosed for the purpose of reducing or compensating for the thermal stresses in the component. The thermal stresses arise as a result of temperature changes during processing and during operation and on account of the different expansion coefficients of the semiconductor and carrier substrate. The carrier substrate is patterned in such a way that the thermal stresses are reduced or compensated for sufficiently to ensure that the component does not fail.
摘要:
A luminescent diode chip for flip-chip mounting on a carrier, having a conductive substrate (12), a semiconductor body (14) that contains a photon-emitting active zone and that is joined by an underside to the substrate (12), and a contact (18), disposed on a top side of the semiconductor body (14), for making an electrically conductive connection with the carrier (30) upon the flip-chip mounting of the chip, whereby either the carrier is solder covered or a layer of solder is applied to the contact. An insulating means (40, 42, 44, 46, 48) is provided on the chip, for electrically insulating free faces of the semiconductor body (14) and free surfaces of the substrate (12) from the solder.