摘要:
Described herein are embodiments of a first resonator, with a resonant frequency f1, optionally coupled to an energy source; and a second resonator, with a resonant frequency f2, optionally coupled to an energy drain, located a variable distance from the first resonator. The first resonator and the second resonator may be coupled to provide near-field wireless energy transfer among the first resonator and the second resonator, and where f1 may be approximately equal to f2 and both f1 and f2 may be less than 400 MHz.
摘要:
A new class of surface plasmon waveguides is presented. The basis of these structures is the presence of surface plasmon modes, supported on the interfaces between the dielectric regions and the flat unpatterned surface of a bulk metallic substrate. The waveguides discussed here are promising to have significant applications in the field of nanophotonics by being able to simultaneously shrink length, time and energy scales, allowing for easy coupling over their entire bandwidth of operation, and exhibiting minimal absorption losses limited only by the intrinsic loss of the metallic substrate. These principles can be used for many frequency regimes (from GHz and lower, all the way to optical).
摘要:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
摘要:
The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the β-factor) over large areas, contrary to the conventional wisdom that the β-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
摘要:
The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the β-factor) over large areas, contrary to the conventional wisdom that the β-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
摘要:
Described herein are embodiments of a source resonant structure and a device resonant structure, the structures may be capable of performing wireless near-field energy transfer when separated a distance D from each other, where the absolute value of the difference of said angular frequencies w1 and w2 may be smaller than the magnitude of the coupling rate, k, and where at least one of the resonant structures comprises a high-Q capacitively-loaded conducting-wire loop.
摘要:
Described herein are embodiments of a source resonator optionally coupled to an energy source, and a second resonator, optionally coupled to an energy drain that may be located a distance from the source resonator. The source resonator and the second resonator may be coupled to provide κ/sqrt(Γ1Γ2)>0.2 via near-field wireless energy transfer among the source resonator and the second resonator over distances up to at least the characteristic size of a resonator.
摘要:
The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
摘要:
Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is κ1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is κB2, and during the wireless energy transfers, adjusting at least one of the coupling rates κ1B and κB2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.
摘要:
A system for efficient generation of THz radiation is provided that includes a triply-resonant nonlinear photonic resonator coupled to at least one near-infrared (NIR) or optical waveguide and to at least one THz waveguide. The energy traveling through the at least one near-infrared (NIR) or optical waveguide is converted to THz radiation inside the triply-resonant photonic resonator via a nonlinear difference frequency generation (DFG) process.