Abstract:
Systems and methods for synthesizing molecules on a substrate surface are disclosed. In one aspect, a molecule synthesizing system includes a crossbar array with a planar arrangement of crossbar junctions. Each crossbar junction is independently switchable between a high-resistance state and a low-resistance state. The system also includes a slab with a first surface and a second surface parallel to the first surface. The second surface is disposed on the crossbar array. A current applied to a crossbar junction in a high-resistance state creates an adjacent heated site on the first surface for attaching thermally reactive molecules for molecular synthesis.
Abstract:
Examples of integrated sensors are disclosed herein. An example of an integrated sensor includes a flexible substrate, and an array of spaced apart sensing members formed on a surface of the flexible substrate. Each of the spaced apart sensing members includes a plurality of polygon assemblies. The polygon assemblies are arranged in a controlled pattern on the surface of the flexible substrate such that each of the plurality of polygon assemblies is a predetermined distance from each other of the plurality of polygon assemblies, and each of the plurality of polygon assemblies including collapsible signal amplifying structures controllably positioned in a predetermined geometric shape.
Abstract:
A method for modifying the texture of a semiconductor material is provided. The method includes performing a first texture step comprising reactive ion etching to a first surface of semiconductor material. After the first texture step, the first surface of the semiconductor material has a random texture comprising a plurality of peaks and a plurality of valleys, and wherein at least fifty percent of the first surface has a peak-to-valley height of less than one micron and an average peak-to-peak distance of less than one micron. Additional texture steps comprising wet etch or RIE etching may be optionally applied.
Abstract:
A device for Surface Enhanced Raman Scattering (SERS). The device includes a plurality of nanostructures protruding from a surface of a substrate, a SERS active metal disposed on a portion of said plurality of nanostructures, and a low friction film disposed over the plurality of nanostructures and the SERS active metal. The low friction film is to prevent adhesion between the plurality of nanostructures.
Abstract:
Apparatus, methods, and hollow metal waveguides to perform surface-enhanced Raman spectroscopy are disclosed. An example apparatus includes a hollow metal waveguide to direct Raman photons from an intermediate location within a volume of the hollow metal waveguide toward a distal end of the hollow metal waveguide, and a mirror to direct incident light from a light source to the intermediate location within the volume of the hollow metal waveguide and to direct at least some of the Raman photons toward the distal end.
Abstract:
A memory device (100) includes a semiconductor wire including a source region (132), a drain region (134), and a channel region (130) between the source region (132) and the drain region (134). A gate structure that overlies the channel region includes a memristive portion (120) and a conductive portion (110) overlying the memristive portion (120).
Abstract:
A probe for use in a sensing application includes an elongate body having a first end and a free end, wherein the first end is to be attached to a support. The probe also includes a plurality of nano-fingers having respective bases and tips, wherein each of the plurality of nano-fingers is attached to the free end and is composed of a flexible material, and wherein the plurality of nano-fingers are collapsed toward each other such that the tips of the plurality of nano-fingers are substantially in contact with each other.
Abstract:
An apparatus includes a substrate and a plurality of nano-fingers attached at respective first ends to the substrate and freely movable along their lengths, in which a first set of the plurality of nano-fingers comprises a first physical characteristic, wherein a second set of the plurality of nano-fingers comprises a second physical characteristic, and wherein the first physical characteristic differs from the second physical characteristic.
Abstract:
A self-collecting substrate (10) for surface enhanced Raman spectroscopy having a first surface (10a) and a second surface (10b) opposed thereto, comprising: a waveguiding layer (10′) supported on a support layer (10″), with the waveguiding layer associated with the first surface and the support layer associated with the second surface; and a plurality of metal nano-antennae (14) established on the first surface and operatively associated with the plurality of openings such that exposure of analyte (18) to the light causes preferential aggregation of the analystes in the vicinity of the nano-antennae. A system (50) for at least one of attracting the analytes 18) to the metal nano-antennae (14) and performing surface enhanced Raman spectroscopy using the substrate (10) and a method for increasing a signal for surface enhanced Raman spectroscopy are provided.
Abstract:
An apparatus for detecting at least one species using Raman light detection includes at least one laser source for illuminating a sample containing the at least one species. The apparatus also includes a modulating element for modulating a spatial relationship between the sample and the light beams to cause relative positions of the sample and the light beams to be oscillated, in which Raman light at differing intensity levels are configured to be emitted from the at least one species based upon the different wavelengths of the light beams illuminating the sample. The apparatus also includes a Raman light detector and a post-signal processing unit configured to detect the at least one species.