Abstract:
A fluorescent image acquisition and projection method includes the steps of generating, by a plurality of light sources, invisible fluorescence under control of a control device and obtaining, by a detection unit, a signal of an invisible fluorescent image from a target object. The method further includes the steps of receiving from the detection unit and processing the invisible fluorescent image signal of the target object into a visible fluorescent signal, transmitting the visible fluorescent signal to a projector unit, and projecting, by the projector unit, the visible fluorescent signal onto the target object.
Abstract:
The present invention relates to a light emitting diode with metal piles and one or more passivation layers and a method for making the diode including a first steps of performing mesa etching respectively on a first semiconductor layer and a second semiconductor layer belonging to stacked layers formed on a substrate in sequence! a second step of forming a reflector layer on the mesa-etched upper and side face! a third step of contacting one or more first electrodes with the first semiconductor layer and one or more second electrodes through the reflector layer with the second semiconductor layer; a fourth step of forming a first passivation layer on the reflector layer and the contacted electrodes; and a fifth step of connecting the first electrodes to a first bonding pad through one or more first electrode lines, bring one ends of vertical extensions having the shape of a metal pile into contact with one or more second electrodes, and connecting the other ends of the vertical extensions to a second bonding pad through one or more second electrode lines. As effects of the present invention, the loss of light emitting area decreases and current diffusion efficiency increases.
Abstract:
The disclosure relates to a nitride based semiconductor light emitting device with improved luminescence efficiency by increasing a recombination rate of electrons and holes contributing to luminescence, which results from matching the spatial distribution of electron and hole wave functions. The nitride based semiconductor light emitting device according to the present invention includes an n-type nitride layer, an active layer formed on the n-type nitride layer, and a p-type nitride layer formed on the active layer. At this stage, a strain control layer, and the at least one layer has a larger energy bandgap than a quantum well layer in the active layer. The strain control layer is disposed in an area where the quantum well layer of the active layer is formed. Moreover, an energy bandgap of the strain control layer is less than that of quantum barrier of the active layer.
Abstract:
The disclosure relates to a nitride based semiconductor light emitting device with improved luminescence efficiency by increasing a recombination rate of electrons and holes contributing to luminescence, which results from matching the spatial distribution of electron and hole wave functions. The nitride based semiconductor light emitting device according to the present invention includes an n-type nitride layer, an active layer formed on the n-type nitride layer, and a p-type nitride layer formed on the active layer. At this stage, a strain control layer, and the at least one layer has a larger energy bandgap than a quantum well layer in the active layer. The strain control layer is disposed in an area where the quantum well layer of the active layer is formed. Moreover, an energy bandgap of the strain control layer is less than that of quantum barrier of the active layer.
Abstract:
The present invention relates to a multi-luminous element and a method for manufacturing the same. The present invention provides the multi-luminous element comprising: a buffer layer disposed on a substrate; a first type semiconductor layer disposed on the buffer layer; a first active layer which is disposed on the first type semiconductor layer and is patterned to expose a part of the first type semiconductor layer; a second active layer disposed on the first type semiconductor layer which is exposed by the first active layer; and a second type semiconductor layer disposed on the first active layer and the second active layer, the first and second active layers being repeatedly disposed in the horizontal direction, and the method for manufacturing the same.
Abstract:
The present invention relates to a compressed sensing-based Brillouin frequency domain distributed optical fiber sensor device, and includes: a probe light generation unit that generates probe light using light output from a light source unit and transmits the probe light through one end of a sensing optical fiber; a compressed sensing light generation unit that generates compressed sensing light having a complex signal waveform, in which a plurality of different frequency signals are compressed, using the light output from the light source unit; an optical circulator that receives the compressed sensing light through an input terminal, transmits the same to an output terminal connected to the other end of the sensing optical fiber, and outputs, to a detection terminal, light scattered in the sensing optical fiber and incident through the output terminal; a light detection unit that detects Brillouin scattered light received through the detection terminal; a compressed sensing signal generation unit that generates a compressed sensing signal so that the compressed sensing light is generated; and a signal processing unit that controls the compressed sensing signal generation unit and calculates a temperature or strain for each position of the sensing optical fiber from a signal output from the light detection unit.
Abstract:
According to an embodiment, a holographic microscope comprises a light source emitting light to an object, a beam splitter reflecting the light emitted from the light source to the object and transmitting object light reflected from the object, a holographic image sensor sensing information, including a holographic image, by receiving the object light and allowing the object light to coherently interfere with reference light, and an image processor obtaining three-dimensional (3D) information about the object based on the information sensed by the holographic image sensor. The holographic image sensor includes a lens focusing the object light to the holographic image sensor, a filter transmitting a predetermined wavelength band of light of the focused object light, a light receiving unit receiving interference light to sense a holographic image, and a reference light source directly emitting the reference light having the predetermined wavelength band to the light receiving unit.
Abstract:
A composition for eco-friendly infrared transmissive glass and a method for optical glass using the same are disclosed. According to an embodiment of the present invention, there is provided a method for manufacturing optical glass transmitting an infrared wavelength band of light by a preset reference value or more, comprising mixing preset contents of Ge, Ga, and Se and charging the mixture into a preset container, performing fusion on the preset container in a first preset environment, and gradually cooling the container in a second preset environment.
Abstract:
According to an embodiment of the disclosure, a system for controlling an emergency bell based on sound comprises an emergency bell device installed in a crime area, gathering sound information generated in the crime area, detecting an emergency event from the gathered sound information, and generating an emergency bell operation signal, an analysis server receiving, in real-time, the sound information from the emergency bell device if the emergency bell operation signal is received, classifying per-time key sound sources in the sound information, and providing a situation analysis result on whether a crime occurs using the classified per-time key sound sources, and a control server receiving the situation analysis result and providing on-site dispatch information or situation response information to a security terminal in charge of the crime area based on the received situation analysis result.
Abstract:
According to an embodiment, a self-powered sensor comprises at least one first layer emitting light in a preset wavelength band by receiving power from an outside, or receiving the emitted light reflected by an object, at least one second layer receiving light and generating a current, and a plurality of connectors each grown between two adjacent ones of the at least one first layer and the at least one second layer, the plurality of connectors transferring the generated current to the outside or transferring the power received from the outside to the at least one first layer and the at least one second layer.