Abstract:
A system is disclosed for detecting and calculating the level of ambient and/or environmental noise, such as electromagnetic interference generated by electric power lines, ambient lights, light dimmers, television or computer displays, power supplies or transformers, and medical equipment. In some embodiments, the system performs frequency analysis on the interference signal detected by light photodetectors and determines the power of the interference signal concentrated in the analyzed frequency bands. The worst-case interference level can be determined by selecting the maximum from the computed power values. In some embodiments, the determined interference signal power can be compared with the noise tolerance of a patient monitoring system configured to reliably and noninvasively detect physiological parameters of a user. The results of the comparison can be presented to the user audio-visually. In some embodiments, the system can be used to perform spot check measurements of electromagnetic interference.
Abstract:
Aspects of the present disclosure include a sensor configured to store in memory indications of sensor use information and formulas or indications of formulas for determining the useful life of a sensor from the indications of sensor use information. A monitor connected to the sensor monitors sensor use and stores indications of the use on sensor memory. The monitor and/or sensor compute the useful life of the sensor from the indications of use and the formulas. When the useful life of the sensor is reached, an indication is given to replace the sensor.
Abstract:
The present disclosure describes an implantable medical device utilizing an event-triggered prognostic indicator. The disclosure describes techniques for prognostics and management of implantable medical systems to facilitate continuity of performance of sensing and therapy delivery functions by providing adequate response time to handle emerging issues prior to adverse clinical impacts. In accordance with the present disclosure, event-triggered prognostic indicators facilitate the identification of potential device conditions.
Abstract:
A physiological parameter system has one or more parameter inputs responsive to one or more physiological sensors. The physiological parameter system may also have quality indicators relating to confidence in the parameter inputs. A processor is adapted to combine the parameter inputs, quality indicators and predetermined limits for the parameters inputs and quality indicators so as to generate alarm outputs or control outputs or both.
Abstract:
A cable monitoring apparatus includes a housing having an input interface adapted to electrically connect to one end of a medical cable and an output interface adapted to electrically connect to an electrical system. Signal processing circuitry is incorporated within the housing for receiving a medical signal from the medical cable via the input interface and for selectively passing the medical signal to the electrical system via the output interface when in a first mode of operation, and has application software for selectively testing functionality of the medical cable when in a second mode of operation. The medical signal may include at least one monitoring signal selected from a group consisting of fetal and maternal medical signals.
Abstract:
Sensors are attached to a living being so as to generate corresponding sensor signals. A monitor is in communications with the sensors so as to derive physiological parameters responsive to the sensor signals. Predetermined limits are applied to the physiological parameters. At least one indicator responsive to the physiological parameters and the predetermined limits signal the onset of a sepsis condition in the living being.
Abstract:
A blood pressure measurement apparatus detects a downward flexure of an arm rest and informs a user of the downward flexure on a display unit. By providing a partially color changing display or a blinking display on the display unit, the user is informed that a measurement posture is not good. The blood pressure measurement apparatus has an elbow rest with an arrangement that can easily prompt the user to be in a good posture for measurement.
Abstract:
The present invention relates to a method and apparatus for managing patient data. In one aspect, the invention relates to a system for managing patient data having many instruments. The instruments have a sampling member for sampling a body fluid from a patient and are in direct communication with at least one other instrument.