Abstract:
Mulitube falling-film reactor for the continuous sulfonation and sulfation of fluid-state organic substances by reaction with gaseous sulphuric anhydride (SO.sub.3), has each tubular element non-permanently fixed to the plates and has a nozzle (10) fitted in a sleeve (20) integral with a reaction tube (23). The nozzle (10) can slide within the sleeve (20) and may be placed at different heights with respect to the latter, forming with the end-piece (14) a cylindrical crown opening (18) of fixed width and variable height. Such arrangement permits to control the delivery of the fluid to be sulfonated. The opposite end of each tube (23) fits into a double-plate seal system.
Abstract:
An electron beam source or generator is described for the treatment of toxic materials in a treatment system in which electron beams are reacted with a flowing influent in a reaction chamber. The system is modular allowing different configurations as demanded by the site and by the clean-up job. It is also portable in that it can be easily moved from place to place. If mounted on a movable base it can be taken from place to place for use.
Abstract:
A support for sheaves of pipe that prevents each pipe (4) individually and each sheaf as a whole from sagging. Each pipe extends through a more or less matching perforation. The support comprises at least two adjacent, parallel, and mutually attached disks (2 or 22) containing perforations (6 or 30) uniformly distributed at an angle of 60.degree. and matching the outer cross-section of the pipe. Every nth perforation in every nth line along one of the major axes (8, 10, & 12 or 24, 26, & 28) of distribution is concentrically expanded into the vicinity of the (n-1)th surrounding perforations (6 or 30), wherein n=2 or 3. The particular expansions (14 or 30) in subsequent disks (2a & 2b or 22a & 22b) are displaced such that every expansion in one disk is coaxial with a perforation (6c or 30b) left in the other disk.
Abstract:
A process for recovering a hydrocarbon from a hydrocarbon bearing sand comprising the steps of mixing a chemical additive with a chemical composition and with a hydrocarbon bearing sand containing hydrocarbon and residual solids including clay, at a temperature to form a slurry. The chemical composition comprises an aqueous phase and a minor amount of a chemical agent selected from the group consisting of at least one ethoxylated alkylphenol compound, at least one ethoxylated dialkylphenol compound, MIBC, SC-177, Petronate HL, Clacium Lignosulfonate and mixtures thereof. The slurry is aerated to produce essentially sludge-free tailings and a mixture of hydrocarbon, aqueous phase and residual solids including clay. The process further comprises the step of separating the mixture of the hydrocarbon, the aqueous phase and the residual solids including clay from the essentially sludge-free tailings.
Abstract:
A process for preparing an oil-in-aqueous phase emulsion and removing contaminants from a contaminated hydrocarbon. The process comprises mixing a contaminated hydrocarbon with a reactant and an emulsifying composition. Contaminants are removed from the contaminated hydrocarbon either during the mixing, after the mixing, or during the combustion of the mixture, or after combustion of the mixture such as from combustion flue gases.
Abstract:
A stream of process gas is indirectly heated in an elongated reaction chamber (1) with a longitudinal axis, a first end (12) and a second end (13) and defined by an outside shell (2) and a thermally conductive inner wall (4). The inner wall defines at least one recess or cavity (3) which extends substantially between the first and second end of the chamber and parallel to the longitudinal axis thereof. A process feed line (6) and a product-gas discharge line (7) are provided at opposite ends (12, 13) of the chamber. A heat conductive and heat resistant barrier (8) which defines an interior space extends coaxially with the recess or cavity (3) substantially along the entire length of the inner wall (4) and forms an annular space (9) therewith. A hot flue gas feed line (10) and a flue gas discharge line (11) is provided at one end (13) of the chamber. The hot gas feed line (10) leads directly into the interior space of the barrier (8) and the annular space (9) is in fluid communication with the interior space of the barrier (8) at the end (12) of the chamber which is opposite to the location of the hot flue gas feed line (10).
Abstract:
A process for the preparation of low-viscosity improved stable crude oil transport emulsions. The process comprises producing a hydrocarbon crude, and mixing the produced hydrocarbon crude with an emulsifying composition(s) which contains water and is capable of assisting the formation of an oil-in-water emulsion. The amount of the emulsifying composition(s) that is mixed with the produced hydrocarbon crude is sufficient to form an oil-in-water emulsion having water content of from about 10 percent to about 60 percent by weight water and a viscosity sufficiently low for allowing the transport of the formulated oil-in-water emulsion.
Abstract:
The invention is a method of handling the enthalpy of reaction of fast homogeneous gas-phase chemical reactions, by using mechanical energy in the form of work performed by moving surfaces in contact with the reactants, for adding energy to or removing energy from the gaseous reactants. Transfer of energy is obtained by adiabatic compression or expansion of the gas, or by adiabatic dissipation of mechanical energy into heat. The invention further relates to an apparatus for carrying out fast homogeneous gas phase chemical reactions wherein the said principles are applied in the reactor and to a process for cracking hydrocarbons wherein the said principle is applied in the reactor.
Abstract:
A sinuous shaped heat exchanger made up of a plurality of generally U-shaped heat exchanger units or sections or banks arranged with one of the ends of each of the U-shaped banks in opposing end to end relationship with one of the ends of a next succeeding bank in such a manner that places the outlet tube sheet of such bank supporting the outlet ends of the tubes of such bank face to face with the inlet tube sheet of the next bank supporting the inlet ends of the tubes of such next succeeding bank. The tubes at the outlet side of the outlet tube sheet and the tubes at the inlet side of the inlet tube sheet protrude toward each other beyond the surfaces of the tube sheets. A removable transition connecting piece in the form of an apertured plate with the same hole diameter and pitch as the tube sheets is sandwiched between the outlet tube sheet and the inlet tube sheet. It is removably secured in that position by securing it to the aforementioned ends of the banks. The protruding tubes from the two tube sheets fit snugly but removably into opposite ends of the holes in the transition plate thereby providing a plurality of continuous, unbroken and uninterrupted sinuous shaped passageways through and between the tubes of the plurality of banks.
Abstract:
Sulfonation of a sulfonatable organic compound is effected by means of a two-stage reaction with an SO.sub.3 -containing gas, in which the first-stage reaction is carried out by flowing, in parallel flow relation, said organic compound and said SO.sub.3 -containing gas upwardly into the lower ends of a plurality of vertically positioned cylinders or double-cylinders, and the second-stage reaction is carried out by the steps of collecting the reaction product of the first-stage reaction, adding fresh SO.sub.3 -containing gas to the reaction product thus collected and flowing in parallel flow arrangement the reaction mixture downwardly into the upper end of a vertically positioned cylinder or double-cylinder.