Abstract:
Superabrasive cutting elements, backed compacts and methods for their manufacture are disclosed wherein metal coated superabrasive particles are cemented under HPHT conditions. The superabrasives bond to the metal of the coating and the metal coatings of adjacent particles bond to each other forming a matrix. A binding aid with thermal expansion characteristics close to that of the superabrasive particle can be infiltrated through or otherwise mixed with the particles to assist in the bonding between the metal coatings and to fill in voids. Catalyst and non-catalyst binding aids can also be used. Uncoated, smaller superabrasive particles can be interstitially dispersed among the coated particles to increase the superabrasive concentration and can self bond to form a cemented/sintered structure. Tungsten is a preferred metal coating and silicon is a preferred binding/sintering aid. The superabrasive can be diamond, cubic boron nitride, boron doped diamond or crushed sintered polycrystalline aggregates. The free-standing cutting element can have a brazeable layer and the compact can be backed with, for example, cemented tungsten carbide. Free-standing cutting elements can be thermally stable up to 1,200.degree. C. Backed compacts can be thermally stable up to 1,100.degree. C.
Abstract:
The high pressure/high temperature (HP/HT) process for making diamond or CBN compacts has been modified by placing partitions within the crystal mass before HP/HT processing. With reference to FIG. 3, within the shield metal sleeve 11 and shield metal cup 14 are placed pliable metal shapes 20 in a honeycomb pattern. The abrasive crystals within the tubes 18 and outside the tubes 26 is sintered, and a compact containing the tubes embedded therein results. This compact can be acid leached to give a plurality of small compacts which need little if any additional shaping. The partitions can also be left intact as chip arresters.
Abstract:
An improved diamond compact of the present invention comprises 20 to 85% by volume of diamond grains with a grain size of at least 3 .mu.m and the balance of a binder consisting of 20 to 95% by volume of ultra-fine diamond grains with a grain size of at most 1 .mu.m, at least one member with a grain size of at most 1 .mu.m, selected from the group consisting of carbides, carbonitrides, nitrides, borides of Group 4a, 5a and 6a elements of Periodic Table, solid solutions thereof and mixed crystals thereof and at least one member selected from the group consisting of iron group metals.
Abstract:
Disclosed is an improved process for preparing a composite compact wherein a mass of abrasive crystals, a mass of metal carbide, and a bonding medium are subjected to a high-temperature/high pressure process for providing a composite compact. The sintered carbide mass supports the mass of abrasive crystals and bonding or catalyst metal, and the abrasive crystal grains are directly bonded to adjacent crystal grains in the mass thereof. Such improved process comprises disposing the mass of abrasive crystals in layers wherein the coarsest layer is closest to the carbide mass and is composed of crystals having a largest dimension of between about 75 and 500 microns and the finest layer is disposed farthest away in the carbide mass and is composed of crystals having a largest dimension of less than 10 microns. The abrasive crystals are selected from the group consisting of diamond and cubic boron nitride and preferably are diamond; the metal carbide preferably is tungsten carbide; and the bonding metal preferably is cobalt. The resulting improved composite compact also is disclosed.
Abstract:
In one embodiment, a compact for tools, such as cutting, drilling and shaping tools, consists essentially of self-bonded abrasive particles. The bonded particles define a substantially continuous interconnected network of pores, dispersed throughout the compact. The method for making such a compact comprises the steps of bonding a mass of abrasive particles, aided by a sintering aid material, under high temperatures and pressures (HP/HT) to form an abrasive body comprised of said particles in a self-bonded form and said material infiltrated throughout the body. The body is then treated to remove substantially all infiltrated material, thereby to produce a compact consisting essentially of the self-bonded abrasive particles. In another embodiment, a composite compact which is made in a similar manner to the first embodiment consists essentially of a layer of self-bonded abrasive particle and a substrate layer (preferably of cemented carbide) bonded to the abrasive particle layer.
Abstract:
A process for producing cubic system boron nitride comprises contacting calcium or strontium boron nitride with hexagonal system boron nitride and heating at higher than 1,450.degree. C. under the thermodynamically stable pressure for cubic system boron nitride.
Abstract:
Cubic boron nitride (CBN) crystals of graded particle size are chemically cleaned and disposed in a protective metal cup together with a mass of substrate source material and a concentration of metal for providing an alloy for infusing and wetting the walls of capillary-size voids. The CBN content is increased in density to greater than 70% by volume and placed within a semi-isostatic system of finely-divided powder. Pressure in the range of from about 20,000 to about 100,000 psi is applied semi-isostatically to the system and thereby to the metal cup and its contents. Heat and pressure are then simultaneously applied to the semi-isostatic system. Liquefied infusing and wetting alloy enters the interstices between the CBN crystals to bond them together. The entire system is cooled and the strong composite body of metal-bonded CBN directly bonded to a substrate is recovered therefrom.
Abstract:
This invention gives bonded or compact bodies of polycrystalline cubic system boron nitride and substantially uniform composites of polycrystalline cubic system boron nitride and other hard materials, for example, metal borides, such as titanium boride and zirconium boride, covalent or metallic cabides, such as boron carbide, silicon carbide, titanium, carbide, tungsten carbide and chromium carbide, metal nitrides, such as titanium nitride, tantalum nitride, silicon nitride and aluminum nitride, metal oxides, such as alumina and silica, complex oxide such as garnet and agate, and diamond. Further, this invention provides a process of obtaining the bonded body of these materials which comprises subjecting hexagonal system boron nitride powder, or a mixture of hexagonal system boron nitride powder and cubic system boron nitride crystal powder or powders of the above-mentioned hard materials to high temperatures and high pressures.
Abstract:
Methods for forming cutting elements, methods for forming polycrystalline compacts, and related polycrystalline compacts are disclosed. Grains of a hard material are subjected to a high-pressure, high-temperature process to form a polycrystalline compact. Inclusion of at least one relatively quick spike in system pressure or temperature during an otherwise plateaued temperature or pressure stage accommodates formation of inter-granular bonds between the grains. The brevity of the peak stage may avoid undesirable grain growth. Embodiments of the methods may also include at least one of oscillating at least one system condition (e.g., pressure, temperature) and subjecting the grains to ultrasonic or mechanical vibrations. A resulting polycrystalline compact may include a high density of inter-granularly bonded hard material with a minimized amount of catalyst material, and may provide improved thermal stability, wear resistance, toughness, and behavior during use of a cutting element incorporating the polycrystalline compact.
Abstract:
The invention relates to an ultrahard nanotwinned boron nitride bulk material and synthetic method thereof. Particularly, the invention discloses a nanocrystalline cubic boron nitride bulk material containing high density of twins and synthetic method thereof, in which a nanotwinned boron nitride bulk are synthesized from nanospherical boron nitride particles (preferably with a size of 5-70 nm) with onion-like structure as raw materials by using high temperature and high pressure synthesis. As compared with the prior arts, the nanotwinned boron nitride bulk obtained according to the invention has a much higher hardness than that of a normal cubic boron nitride single crystal. The nanotwinned boron nitride bulk has great prospects in applications, such as precision and ultra-precision machining, abrasives, drawing dies, and special optics as well as other fields.