Abstract:
A self-sharpening refractory metal cutting tool presenting an overhanging cutting portion, i.e. a flange, or ledge, of width equal to (or slightly greater than) the depth of the cut to be taken and maximum thickness equal to tolerable tool flank wear is disclosed. This tool construction has special utility in a novel high-speed cutting method in which only the tool flange does the cutting in which operation the flange is worn away with the wear progressing lengthwise of the flange during which time the flange sequentially performs a roughing cut and then a finishing cut in a single pass.
Abstract:
A particulate mixture of ceramic powder, free carbon and a hydride of a metal selected from the group consisting of hafnium, niobium, tantalum, titanium, vanadium, zirconium and mixtures thereof is hot pressed decomposing the hydride and reacting the resulting metal with carbon producing a polycrystalline microcomposite comprised of a continuous phase of the carbide of the metal which encapsulates at least about 20% by volume of the ceramic particles and which either encapsulates or is intermixed with the balance of said ceramic particles.
Abstract:
A particulate dispersion of Al.sub.2 O.sub.3, elemental non-diamond carbon and a titanium member selected from the group consisting of elemental titanium, TiH.sub.2 and mixtures thereof is formed into a compact and sintered producing a ceramic composite having a minimum Rockwell A hardness of about 92 and being comprised of an Al.sub.2 O.sub.3 phase and a substoichiometric titanium carbide phase.
Abstract translation:将Al 2 O 3,元素非金刚石碳和选自元素钛,TiH 2及其混合物的钛成分的颗粒分散体形成为紧凑且烧结的,生产具有约92的最小洛氏硬度A的陶瓷复合材料,并且 由Al2O3相和亚化学计量碳化钛相组成。
Abstract:
A well-bonded polycrystalline cubic boron nitride body is produced by providing the cubic boron nitride particles with a discontinuous coating of tungsten or molybdenum and then infiltrating them in a mass with molten silicon or silicon-base alloy.
Abstract:
An adherently bonded polycrystalline diamond body is produced by forming a charge composed of a mass of diamond crystals in contact with a mass of eutectiferous silicon-rich alloy wherein the alloy is in contact or in association with hexagonal boron nitride, confining such charge within a reaction chamber, subjecting the confined charge to a pressure of at least 25 kilobars, heating the pressure-maintained charge to a temperature sufficient to melt the alloy and at which no significant graphitization of the diamond occurs whereby the alloy infiltrates through the interstices between the diamond crystals producing said body.
Abstract:
A mass of diamond crystals contacting a mass of elemental silicon are confined within a pressure-transmitting medium. The resulting charge assembly is subjected to a pressure of at least 25 kilobars causing application of isostatic pressure to the contacting masses which dimensionally stabilizes them and increases the density of the mass of diamond crystals. The resulting pressure-maintained charge assembly is heated to a temperature sufficient to melt the silicon and at which no significant graphitization of the diamond occurs whereby the silicon is infiltrated through the interstices between the diamond crystals producing, upon cooling, an adherently bonded integral body.
Abstract:
A current limiter device comprises at least two electrodes; an interlocked-array electrically conductive composite material disposed between the electrodes; interfaces disposed between the electrodes; an inhomogeneous distribution of resistance at the interfaces whereby, during a high current event, adiabatic resistive heating at the interfaces causes rapid thermal expansion and vaporization and physical separation at the interfaces; and means for exerting compressive pressure on the electrically conducting composite material. The interlocked-array electrically conductive composite material comprises an interlocked-array of spaced apart discrete regions of at least one insulating flexible material and at least one electrically conductive composite material. A method for forming the interlocked-array electrically conductive composite material structure is also set forth by the invention.
Abstract:
An electrochemical corrosion potential sensor is fabricated by initially joining an electrical conductor to a sensor tip. An electrical cable is joined to the tip conductor. Ceramic powder is fused under heat around the tip conductor to form an integral annular electrically insulating band therearound to insulate the tip from the cable. The band may be formed by plasma spraying, or it may be molded and sintered to seal it to the tip and conductor without brazing. In a preferred embodiment, the band is formed of yttria-stabilized-zirconia or magnesia-stabilized-zirconia.
Abstract:
A current limiting system for a circuit limits current flow through the system. The current limiting system comprises at least one main switch comprising first and second main switch contacts and a contactor connecting the first and second main switch contacts; at least one current limiting device and at least one solid-state switch, which are mechanically unconnected to the main switch, and the at least one current limiting device and least one solid-state switch are arranged in series on a series side of the circuit; the at least one main switch is on a main switch side of the circuit arranged in parallel with the series side; a control that senses a predetermined condition of the circuit, and operably connected with the at least one solid state switch to open and it. Under normal operating conditions, most current flows through the at least one main switch side. When the predetermined condition causes the main switch to open, and the resistance increases in a main switch side. Thus, current flows to the series side of the circuit side. The current limiting device then switches its state from a low resistance to a high resistance state to limit the current passing through the current limiting system, where the control has sensed a predetermined condition and signals the solid-state switch to open, thereby interrupting current flow through of the current limiting system.
Abstract:
Sharp tools have different cutting characteristics from dull or worn tools. Among these differences is that a wear land develops on the cutting tool so that more of the cutting tool comes into contact with the workpiece during the cutting process. The increased contact area between the tool and workpiece forces more energy to be consumed by the cutting machine in making a cut because more energy is expended in non-productive work. Indications of an increase in non-productive work are the increased power or force necessary to operate a spindle in lathes, milling machines, etc., and the increased energy in cutting vibrations in a low frequency range emitted during the cutting process. Another indication of decreased efficiency of the cutting process is the decreased energy in cutting vibrations in a high frequency range emitted during the cutting process. A method and apparatus are described for continuously monitoring a ratio of spindle force or power or low frequency vibration energy to high frequency vibration energy during the cutting process, and generating an output warning signal when the radio reaches a preselected level correlated with excessive tool wear.