Abstract:
The present invention addresses the aims and issues of making multi layer microstructures including “metal-shell-oxide-core” structures and “oxide-shell-metal-core” structures, and mechanically constrained structures and the constraining structures using CMOS (complimentary metal-oxide-semiconductor transistors) materials and layers processed during the standard CMOS process and later released into constrained and constraining structures by etching away those CMOS materials used as sacrificial materials. The combinations of possible constrained structures and methods of fabrication are described.
Abstract:
A thermoelastic device comprising an expansive element is disclosed. The expansive element is formed from a material, which is preselected on the basis that it has one or more of the following properties: a resistivity between 0.1 μΩm and 10.0 μΩm; chemically inert in air; chemically inert in the chosen ink; and depositable by CVD, sputtering or other thin film deposition technique.
Abstract:
In accordance with an embodiment of the present invention, an electrostatic actuator has a base having a plurality of base pillars formed thereon and has a stage having a plurality of stage pillars formed thereon. The controlled application of voltage signals to the base pillars and/or the stage pillars results in electrostatic force that effects movement of the stage with respect to the base.
Abstract:
A micro-electromechanical actuator includes a pair of elongate layers capable of being heated with an electrical current to thermally expand and to perform work. A pair of spacers separates the elongate layers from each other. The spacers are arranged at respective opposite ends of the elongate layers and are fast with the layers so that the actuator is deflected when one of the layers is heated.
Abstract:
A composite for a transducer facilitates an increased actuation force as compared to similar prior art composites for transducers. In accordance with the present invention, the composite also facilitates increased compliance of the transducer in one direction and an improved reaction time as compared to similar prior art composites for transducers, as well as provides an increased lifetime of the transducer in which it is applied.
Abstract:
The present invention provides an apparatus. The apparatus, may include an actuator located over a substrate, a movable feature located over and coupled to the actuator, and a layer of material located above the actuator and movable feature and not constituting part of a beam/spring associated with the movable feature, the layer of material configured as a reservoir having an interior capable of holding a liquid, the movable feature being exposed to the interior.
Abstract:
A nanoscale nanocrystal which may be used as a reciprocating motor is provided, comprising a substrate having an energy differential across it, e.g. an electrical connection to a voltage source at a proximal end; an atom reservoir on the substrate distal to the electrical connection; a nanoparticle ram on the substrate distal to the atom reservoir; a nanolever contacting the nanoparticle ram and having an electrical connection to a voltage source, whereby a voltage applied between the electrical connections on the substrate and the nanolever causes movement of atoms between the reservoir and the ram. Movement of the ram causes movement of the nanolever relative to the substrate. The substrate and nanolever preferably comprise multiwalled carbon nanotubes (MWNTs) and the atom reservoir and nanoparticle ram are preferably metal (e.g. indium) deposited as small particles on the MWNTs. The substrate may comprise a silicon chip that has been fabricated to provide the necessary electrodes and other electromechanical structures, and further supports an atomic track, which may comprise an MWNT.
Abstract:
A motion conversion system is described. The motion conversion system comprises a first torsional member operative for rotating in a first direction. A second torsional member is offset a distance from the first torsional member, wherein the second torsional member is operative for rotating in a direction opposite from the first direction. And, a lateral member has a lower surface connected to the first and second torsional members. Wherein, translational movement of the lateral member results from rotational movement of the first and second torsional members.
Abstract:
The tiltable-body apparatus including a frame member, a tiltable body, and a pair of torsion springs having a twisting longitudinal axis. The torsion springs are disposed along the twisting longitudinal axis opposingly with the tiltable body being interposed, support the tiltable body flexibly and rotatably about the twisting longitudinal axis relative to the frame member, and include a plurality of planar portions, compliant directions of which intersect each other when viewed along a direction of the twisting longitudinal axis. A center of gravity of the tiltable body is positioned on the twisting longitudinal axis of the torsion springs.
Abstract:
A MEMS actuator includes a coil stack in the form of microfabricated, electrically conductive first and second superposed layers. A magnet array is superposed in magnetic communication with the coil stack, with first and second coils being selectively, electrically actuatable to generate relative movement between the coil stack and the magnet array both in-plane and out-of-plane. In various embodiments, a plurality of the actuators are integrally coupled to a microfabricated compliant mechanism to provide a high bandwidth, six degree of freedom nanopositioner.