Abstract:
A rotary pump having a variable delivery volume, comprising: a casing; a delivery chamber formed in the casing; at least one delivery rotor which is rotatable in the delivery chamber; an actuating member which is arranged facing a front face of the delivery rotor or surrounds the delivery rotor, and is moveable in the casing for adjusting the delivery volume; the actuating member chargeable with an actuating force which is dependent on a fluid requirement; a track which is formed in the casing and guides the actuating member on an actuating member sliding surface in a sliding contact; and a sliding material which forms at least one of the track and the actuating member sliding surface.
Abstract:
An engine component is composed of an aluminum alloy containing silicon, and includes a plurality of primary-crystal silicon grains located on a slide surface. The plurality of primary-crystal silicon grains have an average crystal grain size of no less than about 12 μm and no more than about 50 μm.
Abstract:
A fluid machinery such as helical compressor includes a sliding mechanism comprising one side member composed, in combination, of a metallic base member having a sliding surface and a lubrication film formed on the sliding surface in a close contact thereto, and a counterpart side member containing fluorocarbon resin in an amount of at least 50 wt. %. The lubrication film includes a solid lubricant having a self-lubrication property and a binder of resin material.
Abstract:
A scroll fluid machine comprises an orbiting scroll and a stationary scroll. The orbiting scroll comprises an orbiting end plate having an orbiting wrap, and the stationary scroll comprises a stationary end plate having a stationary wrap. The orbiting scroll is supported to turn on an eccentric shaft portion of a drive shaft. The orbiting wrap engages with the stationary wrap to form a sealed chamber therebetween. A bearing tube is detachably disposed in a housing. The drive shaft is supported to turn in the bearing tube.
Abstract:
A process for producing an aluminum alloy-made forged scroll part includes a step of casting an aluminum alloy material into a round bar having a diameter of 130 mm or less, the aluminum alloy material comprising 8.0-12.5 mass % of Si, 1.0-5.0 mass % of Cu and 0.2-1.3 mass % of Mg; a step of cutting the aluminum alloy round bar into a stock material for forging; a step of subjecting the stock material to upsetting at an upsetting ratio of 20-70% to form a pre-shaped product that is a workpiece; and a forging step of applying pressure onto the workpiece with a punch at a temperature of 300-450null C. to form a scroll wrap in a direction of the punch pressure, and wherein the forging step includes a single step in which a forged scroll part is press-formed while a back pressure smaller than the punch pressure is applied to an end of the scroll wrap in a direction opposite to the punch pressure direction. With this method, it is possible to produce a forged scroll part capable of suppressing occurrence of coarse primary Si crystals and reducing a variation in height of a wrap in a scroll part and in every scroll part being forged.
Abstract:
A compressor for receiving at least one compression element in a sealed container is provided. The sealed container comprises a container body and a cover member for blocking an opening of the container body, both of which are made of an aluminum material. The cover member is electrically welded to the container body over an entire circumference of the cover member, and thick ribs with a thickness dimension extending from a circumference portion to a central portion are formed with a predetermined pitch on the cover member. In this manner, an increase in the manufacturing cost and a reduction of the workability can be substantially suppressed, while the reliability of the sealed container of the compressor and the aluminum members assembled by arc welding can be substantially improved.
Abstract:
The compressor has two rotors (14, 16), which are rotatably mounted in a housing (10) by means of a shaft each, the rotors (14, 16) rotating without contact with the housing. The rotors (14, 16) consist of a powder-metallurgical AlnullSi alloy, and the housing (10) consists essentially of aluminum.
Abstract:
A swashplate type compressor having a swashplate coated with a tin-cobalt alloy is provided. The alloy comprises between about 12 and 28 weight % cobalt, with the balance substantially comprising tin. The swashplate may further include an intermediate layer of about 100 weight % tin underneath the tin-cobalt alloy layer. Methods of coating a swashplate with the coatings according to the present invention are also provided.
Abstract:
A swashplate type compressor having a swashplate coated with a tin-cobalt alloy is provided. The alloy comprises between about 12 and 28 weight % cobalt, with the balance substantially comprising tin. The swashplate may further include an intermediate layer of about 100 weight % tin underneath the tin-cobalt alloy layer. Methods of coating a swashplate with the coatings according to the present invention are also provided.
Abstract:
A method of producing a metal component interacting by way of a sliding surface with a friction partner, for a drive assembly, includes forming the component from an aluminum-silicon-copper-magnesium alloy. The alloy has 12-15 wt. % silicon, 2.5-3.5 wt. % copper, and 0.4-0.8 wt. % magnesium. The particle size for the silicon is between 4 &mgr;m and 30 &mgr;m. The sliding surface of the component in the firm condition is compressed by calibrating.