Abstract:
Systems, methods and apparatus for detecting stalks processed by a combine harvester, for measuring stalk diameters, and for displaying harvest metrics and yield data to a user based on stalk locations and stalk diameters.
Abstract:
The present invention relates to a bra fitting method for determining and presenting customized advice for bras. Compared to existing methods the present method is based on an optimized fitting of the bodily dimensions with the functional characteristics of a bra model. Applying a given technique, the present invention incorporates the functional characteristics, and in particular the lifting, shaping and covering of the bra in the brassiere measurement method. As such the method of the present invention results in a customized advice, allowing users to gain insights in the fitting requirements and providing them with a confidence to seek and identify a correctly fitting bra.
Abstract:
Systems, methods and apparatus for detecting stalks processed by a combine harvester, for measuring stalk diameters, and for displaying harvest metrics and yield data to a user based on stalk locations and stalk diameters.
Abstract:
A measurement apparatus and corresponding method can be used to measure an absolute diameter of a part in a shop floor environment. A tracker such as a laser tracker monitors a position of a probe end of a measurement arm of the apparatus. The position measured by the laser tracker can be used directly account for errors in the apparatus such as, for example, positioning errors of the measurement arm. The position monitoring of the tracking device eliminates complex apparatus calibrations and calculations used for previous devices.
Abstract:
A circular shape characteristic measuring device includes a shape measuring device that obtains measured data by measuring a profile shape of a circular cross-section of an object to be measured having the circular cross-section, and a computation device that calculates a circular shape characteristic of the circular cross-section. The computation device includes: an input device configured to input one of three parameters including a cutoff value of the filtering process, a minimum number of samples, and a ratio of a radius of the circular cross-section to a radius of a gauge head; a parameter table that stores a relationship between the three parameters, and based on the input parameter, determines the other two parameters; and a sampler configured to perform sampling of the measured data based on the minimum number of samples.
Abstract:
The present invention intends to eliminate the need for a temperature detecting element adapted to measure the temperature of a roll main body in an induction-heated roller apparatus, and includes an impedance calculation part that calculates the impedance of a winding, a relational data storage part that stores relational data indicating the relationship between the impedance of the winding and the temperature of the roll main body, and a roll temperature calculation part that calculates the temperature of the roll main body from the impedance obtained by the impedance calculation part and the relational data stored in the relational data storage part.
Abstract:
A device includes a first sensor for making a radial measurement of a tubular component and a support which can drive the first sensor in a circular trajectory in a predefined plane orthogonal to the principal axis of the component. The support includes a principal body that can be attached to the component by a releasable attachment mechanism and a rotary shaft onto which an arm carrying the first sensor is attached to allow displacement of the first sensor in a circular trajectory inside or about the component. The device further includes a second sensor for measuring an angular position of the first sensor for each of its radial measurements, the radial and angular measurements obtained allowing the profile of the component in the predefined plane to be determined.
Abstract:
A measurement apparatus and corresponding method can be used to measure an absolute diameter of a part in a shop floor environment. A tracker such as a laser tracker monitors a position of a probe end of a measurement arm of the apparatus. The position measured by the laser tracker can be used directly account for errors in the apparatus such as, for example, positioning errors of the measurement arm. The position monitoring of the tracking device eliminates complex apparatus calibrations and calculations used for previous devices.
Abstract:
The invention relates to a process for the destruction-free testing of metallic pipes, in particular seamlessly produced steel pipes, in which method the entire length of the pipe is scanned following the circumference precisely and in this case, in addition to the wall thickness (WD) and the external diameter (Da) being determined, the inner and outer surfaces of the pipe are examined for faults, the faults determined in this process are compared with a predefined permissible reference fault depth RFT (RFT=fault threshold of×% of the nominal wall thickness), the pipes are sent to reworking means if the fault threshold is exceeded, and a requisite minimum wall thickness (WDmin) has to be present in the reworked region after the processing has been carried out.For this purpose, the invention provides for the pipes containing faults to be released for reworking only when the determined geometrical parameters have been correlated with one another beforehand in an evaluation step, and the following conditions are met: WD−RFT>WDmin for faults on the inner and outer sides of the pipe and Da−RFT>Da min for faults on the outer side of the pipe.
Abstract translation:本发明涉及一种用于金属管,特别是无缝生产的钢管的无破坏测试方法,其中管道的整个长度在圆周上精确扫描,并且在这种情况下,除了壁厚( WD)和外径(Da),检查管道的内表面和外表面是否存在故障,将此过程中确定的故障与预定义的允许参考故障深度RFT(RFT =故障阈值为×% 如果超过了故障阈值,则将管道送到返工装置,并且在进行处理之后必须在返工区域中存在必要的最小壁厚(WDmin)。 为此,本发明提供了仅在确定的几何参数在评估步骤中预先相互关联并且满足以下条件的情况下,将包含要被释放的故障的管道包括在内才能进行再加工:WD-RFT> WDmin 管道的内侧和外侧以及Da-RFT> Da min,用于管道外侧的故障。
Abstract:
A dimension measuring device 100 in accordance with the present invention includes an end face following mechanism 1 that butts against an end face E of a long material, a dimension measuring mechanism 2 for measuring the dimensions of the long material, and a pushingly moving mechanism 3 for pushingly moving the end face following mechanism toward the end face of the long material. The end face following mechanism includes a plurality of contact sensors for detecting a contact state, and is turnable around two axes intersecting at right angles with each other. The pushingly moving mechanism pushingly moves the end face following mechanism into the state in which the plurality of contact sensors detect that the end face following mechanism butts against the end face of the long material. The dimension measuring mechanism is pushingly moved integrally and is turnable integrally with the end face following mechanism, and measures the dimensions of the long material when it is detected, by the plurality of contact sensors, that the end face following mechanism butts against the end face of the long material.