Abstract:
A pattern detection method and apparatus thereof for inspecting with high resolution a micro fine defect of a pattern on an inspected object and a semiconductor substrate manufacturing method and system for manufacturing semiconductor substrates such as semiconductor wafers with a high yield. A micro fine pattern on the inspected object is inspected by irradiating an annular-looped illumination through an objective lens onto a wafer mounted on a stage, the wafer having micro fine patterns thereon. The illumination light may be circularly or elliptically polarized and controlled according to an image detected on the pupil of the objective lens and image signals are obtained by detecting a reflected light from the wafer. The image signals are compared with reference image signals and a part of the pattern showing inconsistency is detected as a defect so that simultaneously, a micro fine defect or defects on the micro fine pattern are detected with high resolution. Further, process conditions of a manufacturing line are controlled by analyzing a cause of defect and a factor of defect which occurs on the pattern.
Abstract:
A sampling device for photometric determination of the content of an analyte in a sample of whole blood has at least one measuring chamber having locally transparent wall parts, at least one wall part being sufficiently deformable to facilitate displacement of the whole blood sample from the measuring chamber, with a transparent body having a radiation transmission characteristic dependent upon the concentration of a predetermined analyte in the whole blood sample disposed between the wall parts. The sampling device is employed in an analyzer for photometric determination of the content of analyte in a sample of whole blood and in a method of photometric in vitro determination of the content of an analyte in a sample of whole blood. In the method, a sample of whole blood is transferred directly from an in vivo locality to the sampling device, the measuring chamber therein is deformed in a controlled manner to substantially drain the whole blood from the measuring chamber, radiation is transmitted through the substantially drained measuring chamber, detected, and the analyte content determined. A measuring chamber for photometric determination of an analyte in a sample of whole blood has locally transparent wall parts, at least one being sufficiently deformable to facilitate displacement of the whole blood sample from the measuring chamber, and a transparent body disposed between the wall parts. The measuring chamber is employed in an analyzer and in a method for the photometric determination of an analyte in a sample of whole blood.
Abstract:
A process is provided for obtaining spectral information and quantifying the physical properties of a sample. The process comprises launching polychromatic light having a wavelength ranging from about 100 nanometers to about 2500 nanometers alternately through at least one sample channel and at least one reference channel, through at least one high-efficiency fiber optic switch. The sample and the polychromatic light along the sample channel are directed to a sample cell wherein the polychromatic light is passed through the sample, producing sample spectral information. The polychromatic light directed along the reference channel produces reference spectral information. The sample and reference spectral information is reproducibly and uniformly imaged by passing or conveying said sample and reference spectral information through a mode scrambler and the uniformly imaged sample and reference spectral information is then processed in a wavelength discrimination device wherein the uniformly imaged spectral information is separated into component wavelengths and the light intensity at each wavelength determined and recorded. A chemometric model and the separated and recorded uniformly imaged sample and reference spectral information are then utilized to predict the physical properties of the sample. The process of the present invention provides improved prediction accuracy, increased reliability, lower operating costs, and is easier to use and calibrate.
Abstract:
A method and apparatus for determining the concentration of a predetermined energy absorbing compound in a breath sample even in the presence of other unknown energy absorbing compounds. Infrared energy of three wavelengths are passed through the collected sample. The first wavelength of infrared energy, 3.95 microns for example, is selected to be insensitive to absorption by both the predetermined energy absorbing compound such as ethanol and the unknown energy absorbing compounds such as acetone and water vapor. The second wavelength of infrared energy, 3.48 microns for example, is selected to be significantly absorbed by ethanol. The third wavelength of infrared energy, 3.39 microns for example, is selected to be significantly absorbed by acetone and water vapor. Operational amplifiers responsive to the first, second and third predetermined wavelengths of energy are utilized to subtract the effect of the absorption by acetone and water vapor so as to generate an electrical output signal which is proportional only to the ethanol concentration.