Abstract:
A sampling device for photometric determination of the content of an analyte in a sample of whole blood has at least one measuring chamber having locally transparent wall parts, at least one wall part being sufficiently deformable to facilitate displacement of the whole blood sample from the measuring chamber, with a transparent body having a radiation transmission characteristic dependent upon the concentration of a predetermined analyte in the whole blood sample disposed between the wall parts. The sampling device is employed in an analyzer for photometric determination of the content of analyte in a sample of whole blood and in a method of photometric in vitro determination of the content of an analyte in a sample of whole blood. In the method, a sample of whole blood is transferred directly from an in vivo locality to the sampling device, the measuring chamber therein is deformed in a controlled manner to substantially drain the whole blood from the measuring chamber, radiation is transmitted through the substantially drained measuring chamber, detected, and the analyte content determined. A measuring chamber for photometric determination of an analyte in a sample of whole blood has locally transparent wall parts, at least one being sufficiently deformable to facilitate displacement of the whole blood sample from the measuring chamber, and a transparent body disposed between the wall parts. The measuring chamber is employed in an analyzer and in a method for the photometric determination of an analyte in a sample of whole blood.
Abstract:
A spectrophotometer provided with: a sample changer for holding a plurality of samples to be analyzed, each of which is given an identification code, and positioning a selected one of the samples for measurement; means for setting a measuring wavelength for each of the identification codes of the samples; means for setting an identification code for the measured data of each of the samples; means for setting a coefficient to be used for processing the measured data of each of the samples together with an identification code; means for setting an operation expression composed of the identification codes of the measured data of the samples and the identification code of the coefficient; means for storing the data obtained by measuring each of the samples with the corresponding one of the wavelengths set for the sample held by the sample changer in correspondence with the corresponding one of the identification codes of the measured data; and means for reading out the data stored in the storing means and the coefficient set in the setting means in accordance with the identification codes of the measured data and the coefficient which constitute the operation expression set in the setting means, and performing an operation for data processing in accordance with the operation expression.
Abstract:
A method of photometric in vitro determination of at least one blood gas parameter in a sample of whole blood. The whole blood sample is obtained by connecting an at least partially transparent sample container to an in vivo locality and transferring whole blood into the sample container, then breaking the connection. The sample container is arranged in an optical system which has a radiation source and a means for detecting radiation to locate the sample container between the radiation source and the radiation detection means. Radiation is transmitted to the sample from the radiation source and radiation emitted from the sample is transmitted to the radiation detection means. The detected radiation is used to determine the blood gas parameter of the sample. A system for use in this method has a radiation source, a radiation detection means, an at least partially transparent sample container, and a sample container station.
Abstract:
A sampling device for photometric determination of the content of an analyte in a sample of whole blood has at least one measuring chamber having two wall parts, at least one wall part being locally transparent, at least one wall part being sufficiently deformable to facilitate displacement of the whole blood sample from the measuring chamber. The measuring chamber also contains a transparent body having a radiation transmission characteristic dependent upon the concentration of a predetermined analyte in the whole blood sample. The sample device is employed in an analyzer for photometric determination of the content of an analyte in a sample of whole blood and in a method of photometric in vitro determination of the content of an analyte in a sample of whole blood. In the method, a sample of whole blood is transferred directly from an in vivo locality to the sampling device, the measuring chamber therein is deformed in a controlled manner to substantially drain the whole blood from the measuring chamber, radiation is transmitted through the substantially drained measuring chamber, detected, and the analyte content determined.
Abstract:
In a method of photometric in vitro determination of the content of oxygen in a blood sample, a blood sample is transferred directly from an in vivo locality to an at least partially transparent sample container of a sampling device. The sample container has a measuring chamber containing a luminophor, the luminescence of which is quenched in the presence of oxygen. The luminophor is excited by irradiation with radiation from a radiation source. The luminescence emitted by the excited luminophor is detected by a radiation detector and the oxygen content determined on the basis of the radiation detected by the radiation detector. A sampling device and a system for photometric in vitro determination of oxygen in a blood sample are also described.
Abstract:
An analytic instrument for kinetically measuring light absorption characteristics of a plurality of independent samples contained in disposable test tubes arranged in a circular pattern about a single light source. The instrument is designed to be used with a host personal computer and is not specific to any particular type of assay. The instrument obtains and temporarily stores raw data in the form of digitized output signals from the plurality of photodetectors and periodically passes them to the host computer. An incubator has test tube wells arranged in a circular array equidistant from a single incandescent light source. The circular symmetry controls the thermal gradients in the incubator such that all of the samples are disposed on the same isotherm and all of the photodetectors are disposed on the same isotherm. The instrument is designed for use with disposable test tubes, and sources of error arising from optical variation in such test tubes are minimized by providing a separate detector for each tube and by holding the tube fixed with respect to the detector. The light output from the single light source is continuously monitored and is kept constant.