Abstract:
A sampling device for photometric determination of the content of an analyte in a sample of whole blood has at least one measuring chamber having locally transparent wall parts, at least one wall part being sufficiently deformable to facilitate displacement of the whole blood sample from the measuring chamber, with a transparent body having a radiation transmission characteristic dependent upon the concentration of a predetermined analyte in the whole blood sample disposed between the wall parts. The sampling device is employed in an analyzer for photometric determination of the content of analyte in a sample of whole blood and in a method of photometric in vitro determination of the content of an analyte in a sample of whole blood. In the method, a sample of whole blood is transferred directly from an in vivo locality to the sampling device, the measuring chamber therein is deformed in a controlled manner to substantially drain the whole blood from the measuring chamber, radiation is transmitted through the substantially drained measuring chamber, detected, and the analyte content determined. A measuring chamber for photometric determination of an analyte in a sample of whole blood has locally transparent wall parts, at least one being sufficiently deformable to facilitate displacement of the whole blood sample from the measuring chamber, and a transparent body disposed between the wall parts. The measuring chamber is employed in an analyzer and in a method for the photometric determination of an analyte in a sample of whole blood.
Abstract:
In order to improve a one-way measuring element, which may be inserted into an analyzer for analyzing gaseous or liquid samples and which comprises a measuring channel with a measuring zone and one or more sensors located therein, the proposal is put forward that the one-way measuring element be provided with a sensor part whose measuring channel has seals on both ends, and with a sample-taking part, and that a coupling element be placed at the inlet end of the measuring channel for direct coupling of the sample-taking part containing the gaseous or liquid sample, and that the measuring channel be filled with a calibrating and storage medium prior to the measuring process, and that the calibrating and storage medium contained in the measuring channel be displaced by the sample flowing in after the sample-taking part has been coupled to the sensor part. The one-way measuring elements obtained in this way are characterized by great simplicity of design and ease of handling.
Abstract:
A method of photometric in vitro determination of at least one blood gas parameter in a sample of whole blood. The whole blood sample is obtained by connecting an at least partially transparent sample container to an in vivo locality and transferring whole blood into the sample container, then breaking the connection. The sample container is arranged in an optical system which has a radiation source and a means for detecting radiation to locate the sample container between the radiation source and the radiation detection means. Radiation is transmitted to the sample from the radiation source and radiation emitted from the sample is transmitted to the radiation detection means. The detected radiation is used to determine the blood gas parameter of the sample. A system for use in this method has a radiation source, a radiation detection means, an at least partially transparent sample container, and a sample container station.
Abstract:
A sampling device for photometric determination of the content of an analyte in a sample of whole blood has at least one measuring chamber having two wall parts, at least one wall part being locally transparent, at least one wall part being sufficiently deformable to facilitate displacement of the whole blood sample from the measuring chamber. The measuring chamber also contains a transparent body having a radiation transmission characteristic dependent upon the concentration of a predetermined analyte in the whole blood sample. The sample device is employed in an analyzer for photometric determination of the content of an analyte in a sample of whole blood and in a method of photometric in vitro determination of the content of an analyte in a sample of whole blood. In the method, a sample of whole blood is transferred directly from an in vivo locality to the sampling device, the measuring chamber therein is deformed in a controlled manner to substantially drain the whole blood from the measuring chamber, radiation is transmitted through the substantially drained measuring chamber, detected, and the analyte content determined.
Abstract:
A method for determining the 14C content of a gas mixture in which 14C isotopes are present as molecule constituents, is provided. The gas mixture is provided in a measuring space, wherein infrared laser radiation is supplied to the measuring space as measurement radiation. The laser radiation to be supplied to the measuring space is deflected such that it passes through the measuring space a plurality of times by interacting with the gas mixture, wherein the laser radiation is supplied to a detector, in order to determine the absorption of laser radiation by the gas mixture and therefrom determine the 14C content. For generating the laser radiation a pulsed laser is used, which as measurement radiation emits laser pulses with a pulse duration of less than 5 μs, which are supplied to the measuring space.
Abstract:
In a method of photometric in vitro determination of the content of oxygen in a blood sample, a blood sample is transferred directly from an in vivo locality to an at least partially transparent sample container of a sampling device. The sample container has a measuring chamber containing a luminophor, the luminescence of which is quenched in the presence of oxygen. The luminophor is excited by irradiation with radiation from a radiation source. The luminescence emitted by the excited luminophor is detected by a radiation detector and the oxygen content determined on the basis of the radiation detected by the radiation detector. A sampling device and a system for photometric in vitro determination of oxygen in a blood sample are also described.