Abstract:
Disclosed is a method for producing a secondary battery in which an electrode assembly comprising a cathode, an anode and a separator interposed between the cathode and the anode is accommodated in a battery case, the method comprising inserting the electrode assembly into the battery case, injecting an electrolyte into the battery case accommodating the electrode assembly to obtain a secondary battery, storing the secondary battery at a SOC of 1 to 20 for 3 hours to 10 days, removing gas present in the secondary battery, and sealing the battery case, wherein the anode comprises lithium titanium oxide (LTO) represented by the following Formula 1 as an anode active material: LiaTibO4−cAc (1) wherein a, b and c are determined according to an oxidation number of M′ within ranges of 0.5≦a≦3, 1≦b≦2.5, and 0≦c
Abstract:
The described embodiments relate to methods and apparatus for improving pick and place operations. Pick and place operations involving the movement of flexible substrates can be improved by cooling a flexible substrate below a threshold temperature at which the flexible substrate transitions from a flexible state to a rigid state. Once in the rigid state, the flexible substrate can be handled and maneuvered by pick and place operations for a period of time with a limited risk of the flexible substrate wrinkling and tearing. In some embodiments, the flexible substrate is a thin polymeric substrate used to separate oppositely charged battery cells within a battery assembly.
Abstract:
The present disclosure discloses a battery pouch that includes a cavity. The battery pouch also includes a first transition between a first side of the battery pouch and a second side of the battery pouch. The first side of the battery pouch includes a first sealed portion having a minimum threshold distance between the cavity and the edge of the battery pouch. More specifically, the first sealed portion is located between a first outer edge of the cavity and a first outer edge of the battery pouch. The battery pouch also includes a second side having a second sealed portion with minimum threshold distance. Other embodiments are also described and claimed.
Abstract:
A battery includes an electrode assembly, the electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, a current collector, the current collector being electrically and mechanically coupled to one of the electrodes, a case, the electrode assembly and the current collector being disposed within the case, a cap plate, the cap plate having a terminal protruding therefrom, the terminal being electrically coupled to the current collector, and a separating member, the separating member having a protrusion portion and a body portion, the protrusion portion being fixed to the cap plate, and the body portion extending along a length of the current collector and being interposed between the current collector and an inner wall of the case.
Abstract:
Methods and apparatus to form biocompatible energization elements are described. In some examples, the methods and apparatus to form the biocompatible energization elements involve forming cavities comprising active cathode chemistry and depositing separators within a laminate structure of the battery. The active elements of the cathode and anode are sealed with a laminate stack of biocompatible material. In some examples, a field of use for the methods and apparatus may include any biocompatible device or product that requires energization elements.
Abstract:
A fabrication method of a battery includes the steps of providing an electrode group, a first sealing film and a second sealing film; bonding a part of a first surface of the first sealing film and a part of a first surface of the second sealing film by thermo-compression to form a sealed chamber, wherein at least one of the first sealing film and the second sealing film has a redundant part located outside the sealed chamber and without being bound by thermo-compression, and a part of the electrode group is disposed in the sealed chamber; and injecting an electrolyte into the sealed chamber.
Abstract:
Prelithiation solutions for lithium-based electrochemical cells are provided. The prelithiam solutions include prelithiation salts that are configured to prelithiate the negative electrode of the electrochemical cell. Lithium ions from the prelithiation lithium salt prelithiate the negative electrode when a charging current is passed between the negative and positive electrodes. In some embodiments, the prelithiation solution may function as an electrolyte for the electrochemical cell and further includes an ion conducting lithium-based salt that is stable at the cell operating voltage. Also provided are methods of prelithiation and electrochemical cells including prelithiation solutions.
Abstract:
A power wafer includes an enclosure that houses an energy plate such as a battery, capacitor, super-capacitor or other type of electrical energy storage device. A power wafer uses conductive infusions to make internal electrical connections. In some embodiments, the power wafer has an enclosure formed of a top structure and a bottom structure, which are configured to snap together. The bottom structure has an energy plate void and conductive infusion voids. In some embodiments, the infusions have carbon nanotubes that are magnetically aligned to increase the electrical and thermal conductivity of the infusions. In certain embodiments, the enclosure is configured to hold multiple energy plates in parallel and/or in series to increase the amperage and/or voltage of the power wafer. When the plates are stacked in parallel, an insulating barrier is placed between the plates.
Abstract:
A secondary battery, including an electrode assembly having a positive sheet and a negative sheet and a separator is interposed therebetween; a tape to wrap an outer surface of the electrode assembly; and a case to receive the electrode assembly. After a remainder of the tape is formed to extend beyond a lower surface of the electrode assembly and joined by a press, the remainder is positioned between a bottom surface of the case and the lower surface of the electrode assembly. According to the embodiment of the present invention, since a junction portion of the tape extended to the outside of the lower surface of the electrode assembly is bent and inserted into the case, a shock-absorbing action is provided to reduce an external shock applied to the secondary battery. Further, an additional tape process can be omitted to simplify a manufacturing process of the secondary battery.
Abstract:
A method for forming an electrochemical cell involves pressing a first contact element of a forming unit onto a first forming contact-making section of a first conductor of the cell, pressing a second contact element of the forming unit onto the second forming contact-making section of the second conductor of the cell, carrying out a forming treatment on the cell, separating the first forming contact-making section from the first conductor, and separating the second forming contact-making section from the second conductor.